Strigolactones (SLs) are a class of plant hormones that play several roles in plants, such as suppressing shoot branching and promoting arbuscular mycorrhizal symbiosis. The positive regulation of plant disease resistance by SLs has recently been demonstrated by analyses using SL-related mutants. In Arabidopsis, SL-mediated signaling has been reported to modulate salicylic acid-mediated disease resistance, in which the priming of plant immunity plays an important role.
View Article and Find Full Text PDFVarious metabolites, including phytohormones, phytoalexins, and amino acids, take part in the plant immune system. Herein, we analyzed the effects of L-methionine (Met), a sulfur-containing amino acid, on the plant immune system in tomato. Treatment with low concentrations of Met enhanced the resistance of tomato to a broad range of diseases caused by the hemi-biotrophic bacterial pathogen pv.
View Article and Find Full Text PDFGlutathione (GSH) is required for various physiological processes in plants, including redox regulation and detoxification of harmful compounds. GSH also functions as a repository for assimilated sulfur and is actively catabolized in plants. In Arabidopsis, GSH is mainly degraded initially by cytosolic enzymes, γ-glutamyl cyclotransferase, and γ-glutamyl peptidase, which release cysteinylglycine (Cys-Gly).
View Article and Find Full Text PDFSulfur (S) is an essential macronutrient for plant growth and metabolism. SULTR2;1 is a low-affinity sulfate transporter facilitating the long-distance transport of sulfate in Arabidopsis. The physiological function of SULTR2;1 in the plant life cycle still needs to be determined.
View Article and Find Full Text PDFGlucosinolates (GSLs), a class of secondary metabolites found in Brassicaceae plants, play important roles in plant defense and contribute distinct flavors and aromas when used as food ingredients. Following tissue damage, GSLs undergo enzymatic hydrolysis to release bioactive volatile compounds. Understanding GSL biosynthesis and enzyme involvement is crucial for improving crop quality and advancing agriculture.
View Article and Find Full Text PDFGlucosinolates (GSLs) are sulfur (S)-rich specialized metabolites present in Brassicales order plants. Our previous study found that GSL can function as a S source in Arabidopsis seedlings via its catabolism catalyzed by two β-glucosidases (BGLUs), BGLU28 and BGLU30. However, as GSL profiles in plants vary among growth stages and organs, the potential contribution of BGLU28/30-dependent GSL catabolism at the reproductive growth stage needs verification.
View Article and Find Full Text PDFSystemic acquired resistance (SAR) is a potent innate immunity system in plants that is induced through the salicylic acid (SA)-mediated signaling pathway. Here, we characterized 3-chloro-1-methyl-1-pyrazole-5-carboxylic acid (CMPA) as an effective SAR inducer in . The soil drench application of CMPA enhanced a broad range of disease resistance against the bacterial pathogen and fungal pathogens and in , whereas CMPA did not show antibacterial activity.
View Article and Find Full Text PDFSulfur LIMitation1 (SLIM1) transcription factor coordinates gene expression in plants in response to sulfur deficiency (-S). SLIM1 belongs to the family of plant-specific EIL transcription factors with EIN3 and EIL1, which regulate the ethylene-responsive gene expression. The EIL domains consist of DNA binding and dimerization domains highly conserved among EIL family members, while the N- and C-terminal regions are structurally variable and postulated to have regulatory roles in this protein family, such that the EIN3 C-terminal region is essential for its ethylene-responsive activation.
View Article and Find Full Text PDFGlutathione (GSH) functions as a major sulfur repository and hence occupies an important position in primary sulfur metabolism. GSH degradation results in sulfur reallocation and is believed to be carried out mainly by γ-glutamyl cyclotransferases (GGCT2;1, GGCT2;2, and GGCT2;3), which, however, do not fully explain the rapid GSH turnover. Here, we discovered that γ-glutamyl peptidase 1 (GGP1) contributes to GSH degradation through a yeast complementation assay.
View Article and Find Full Text PDFStrigolactones are low-molecular-weight phytohormones that play several roles in plants, such as regulation of shoot branching and interactions with arbuscular mycorrhizal fungi and parasitic weeds. Recently, strigolactones have been shown to be involved in plant responses to abiotic and biotic stress conditions. Herein, we analyzed the effects of strigolactones on systemic acquired resistance induced through salicylic acid-mediated signaling.
View Article and Find Full Text PDFHigh-salinity stress represses plant growth by inhibiting various metabolic processes. In contrast to the well-studied mechanisms mediating tolerance to high levels of salt, the effects of low levels of salts have not been well studied. In this study, we examined the growth of plants under different NaCl concentrations.
View Article and Find Full Text PDFRapeseed contains high levels of glucosinolates (GSLs), playing pivotal roles in defense against herbivores and pests. As their presence in rapeseed reduces the value of the meal for animal feeding, intensive efforts to reduce them produced low-seed GSL cultivars. However, there is no such variety suitable for the south part of Japan.
View Article and Find Full Text PDFAutothermal thermophilic aerobic digestion (ATAD) is used to treat human excreta hygienically. We previously reported a unique full-scale ATAD, showing distinctive bacterial community transitions and producing high-nitrogen-content liquid fertilizer; nevertheless, the mechanism remains unclear. One hypothesis involves using a gas-inducing (GI) agitator.
View Article and Find Full Text PDFSulfur is an essential element required for plant growth. It can be found as a thiol group of proteins or non-protein molecules, and as various sulfur-containing small biomolecules, including iron-sulfur (Fe/S) clusters, molybdenum cofactor (Moco), and sulfur-modified nucleotides. Thiol-mediated redox regulation has been well investigated, whereas biosynthesis pathways of the sulfur-containing small biomolecules have not yet been clearly described.
View Article and Find Full Text PDFRecent studies have shown various metabolic and transcriptomic interactions between sulfur (S) and phosphorus (P) in plants. However, most studies have focused on the effects of phosphate (Pi) availability and P signaling pathways on S homeostasis, whereas the effects of S availability on P homeostasis remain largely unknown. In this study, we investigated the interactions between S and P from the perspective of S availability.
View Article and Find Full Text PDFA newly identified chemical, 4-{3-[(3,5-dichloro-2-hydroxybenzylidene)amino]propyl}-4,5-dihydro-1-pyrazol-5-one (BAPP) was characterized as a plant immunity activator. BAPP enhanced disease resistance in rice against rice blast disease and expression of a defense-related gene without growth inhibition. Moreover, BAPP was able to enhance disease resistance in dicotyledonous tomato and plants against bacterial pathogen without growth inhibition, suggesting that BAPP could be a candidate as an effective plant activator.
View Article and Find Full Text PDFGlucosinolates (GSLs) are secondary metabolites that play important roles in plant defense and are suggested to act as storage compounds. Despite their important roles, metabolic dynamics of GSLs under various growth conditions remain poorly understood. To determine how light conditions influence the levels of different GSLs and their distribution in Arabidopsis leaves, we visualized the GSLs under different light conditions using matrix-assisted laser desorption/ionization mass spectrometry imaging.
View Article and Find Full Text PDFSulfur (S) is an essential element for plants, and S deficiency causes severe growth retardation. Although the catabolic process of glucosinolates (GSLs), the major S-containing metabolites specific to Brassicales including Arabidopsis, has been recognized as one of the S deficiency (-S) responses in plants, the physiological function of this metabolic process is not clear. Two β-glucosidases (BGLUs), BGLU28 and BGLU30, are assumed to be responsible for this catabolic process as their transcript levels were highly upregulated by -S.
View Article and Find Full Text PDFSulfur (S) assimilation, which is initiated by sulfate uptake, generates cysteine, the substrate for glutathione (GSH) and phytochelatin (PC) synthesis. GSH and PC contribute to cadmium (Cd) detoxification by capturing it for sequestration. Although Cd exposure is known to induce the expression of S-assimilating enzyme genes, including sulfate transporters (SULTRs), mechanisms of their transcriptional regulation are not well understood.
View Article and Find Full Text PDFRoot hairs often contribute to nutrient uptake from environments, but the contribution varies among nutrients. In , two high-affinity sulfate transporters, SULTR1;1 and SULTR1;2, are responsible for sulfate uptake by roots. Their increased expression under sulfur deficiency (-S) stimulates sulfate uptake.
View Article and Find Full Text PDFPlants take up sulfur (S), an essential element for all organisms, as sulfate, which is mainly attributed to the function of SULTR1;2 in . A disruption mutant of has been characterized with phenotypes similar to plants grown under sulfur deficiency (-S). Although the effects of -S on S metabolism were well investigated in seedlings, no studies have been performed on mature plants.
View Article and Find Full Text PDFCurr Opin Plant Biol
October 2017
Plants assimilate inorganic sulfate into various organic sulfur (S) compounds, which contributes to the global sulfur cycle in the environment as well as the nutritional supply of this essential element to animals. Plants, to sustain their lives, adapt the flow of their S metabolism to respond to external S status by activating S assimilation and catabolism of stored S compounds, and by repressing the synthesis of secondary S metabolites like glucosinolates. The molecular mechanism of this response has been gradually revealed, including the discovery of several regulatory proteins and enzymes involved in S deficiency responses.
View Article and Find Full Text PDFGlutathione and phytochelatins are sulfur containing compounds playing an important role in cadmium (Cd) detoxification. We examined the Cd-induced changes in the percentage of sulfur containing compounds to total sulfur in wild-type and sulfate transporter 1;2 knockout mutant, sel1-10. Cd treatment increased the proportion of sulfate and thiols in the total sulfur content.
View Article and Find Full Text PDFPlants increase sulfate uptake activity under sulfur deficiency (-S). In , is the major high-affinity sulfate transporter induced in epidermis and cortex of roots for mediating sulfate uptake under -S. Though it is known that transcript levels of increase under -S largely due to the function of 5'-upstream region, contributions of 5'-non-transcribed flanking region and 5'-untranslated region (UTR) to transcriptional and post-transcriptional regulations have not yet been individually verified.
View Article and Find Full Text PDFGlucosinolates (GSLs) in the plant order of the Brassicales are sulfur-rich secondary metabolites that harbor antipathogenic and antiherbivory plant-protective functions and have medicinal properties, such as carcinopreventive and antibiotic activities. Plants repress GSL biosynthesis upon sulfur deficiency (-S); hence, field performance and medicinal quality are impaired by inadequate sulfate supply. The molecular mechanism that links -S to GSL biosynthesis has remained understudied.
View Article and Find Full Text PDF