In additive manufacturing (AM), process defects such as keyhole pores are difficult to anticipate, affecting the quality and integrity of the AM-produced materials. Hence, considerable efforts have aimed to predict these process defects by training machine learning (ML) models using passive measurements such as acoustic emissions. This work considered a dataset in which keyhole pores of a laser powder bed fusion (LPBF) experiment were identified using X-ray radiography and then registered both in space and time to acoustic measurements recorded during the LPBF experiment.
View Article and Find Full Text PDFThis study describes accurate, computationally efficient models that can be implemented for practical use in predicting frost events for point-scale agricultural applications. Frost damage in agriculture is a costly burden to farmers and global food security alike. Timely prediction of frost events is important to reduce the cost of agricultural frost damage and traditional numerical weather forecasts are often inaccurate at the field-scale in complex terrain.
View Article and Find Full Text PDFWe present a novel workflow for forecasting production in unconventional reservoirs using reduced-order models and machine-learning. Our physics-informed machine-learning workflow addresses the challenges to real-time reservoir management in unconventionals, namely the lack of data (i.e.
View Article and Find Full Text PDF