Holocentric species are characterized by the presence of centromeres throughout the length of the chromosomes. We confirmed the holocentricity of the dioecious, small chromosome-size species Myristica fragrans based on the chromosome-wide distribution of the centromere-specific protein KNL1, α-tubulin fibers, and the cell cycle-dependent histone H3 serine 28 phosphorylation (H3S28ph) mark. Each holocentromere is likely composed of, on average, ten centromere units, but none of the identified and in situ hybridized high-copy satellite repeats is centromere-specific.
View Article and Find Full Text PDFThe gametophytic epigenetic regulators, MEA and DME, extend their synergistic role to the sporophytic development by regulating the meristematic activity via restricting the gene expression in the shoot apex. The gametophyte-to-sporophyte transition facilitates the alternation of generations in a plant life cycle. The epigenetic regulators DEMETER (DME) and MEDEA (MEA) synergistically control central cell proliferation and differentiation, ensuring proper gametophyte-to-sporophyte transition in Arabidopsis.
View Article and Find Full Text PDFMinichromosomes are small, sometimes circular, rearranged chromosomes consisting of one centromere and short chromosomal arms formed by treatments that break DNA, including plant transformation. Minichromosomes have the potential to serve as vectors to quickly move valuable genes across a wide range of germplasm, including into adapted crop varieties. To realize this potential, minichromosomes must be reliably generated, easily manipulated, and stably inherited.
View Article and Find Full Text PDFThe kinetochore is a supramolecular protein complex assembled on the chromosomes, essential for faithful segregation of the genome during cell divisions. More than 100 proteins are known to constitute the eukaryotic kinetochore architecture, primarily identified using non-plant organisms. A majority of them are fast evolving and are under positive selection.
View Article and Find Full Text PDFWide crosses result in postzygotic elimination of one parental chromosome set, but the mechanisms that result in such differential fate are poorly understood. Here, we show that alterations of centromeric histone H3 (CENH3) lead to its selective removal from centromeres of mature eggs and early zygotes, while wild-type CENH3 persists. In the hybrid zygotes and embryos, CENH3 and essential centromere proteins load preferentially on the CENH3-rich centromeres of the wild-type parent, while CENH3-depleted centromeres fail to reconstitute new CENH3-chromatin and the kinetochore and are frequently lost.
View Article and Find Full Text PDFCantil is reported as a new-found organ specific to the model plant Arabidopsis thaliana that is prominent only in short-day-grown wild-type accessions or long-day-grown genetic mutants with delayed vegetative to reproductive transition. Here, we show that cantils (previously known as nubbins) arise as one of the many phenotypic consequences of aneuploidy resulting from chromosome dosage imbalances in Arabidopsis polyaneuploids despite normal reproductive transition in long-day photoperiods. Without a demonstrated function or adaptive significance, we view cantils as a morphological oddity rather than a separate organ, and as a manifestation of physiological perturbations triggered by genetic and environmental factors.
View Article and Find Full Text PDFUniparental genome elimination (UGE) refers to the preferential exclusion of one set of the parental chromosome complement during embryogenesis following successful fertilization, giving rise to uniparental haploid progeny. This artificially induced phenomenon was documented as one of the consequences of distant (wide) hybridization in plants. Ten decades since its discovery, attempts to unravel the molecular mechanism behind this process remained elusive due to a lack of genetic tools and genomic resources in the species exhibiting UGE.
View Article and Find Full Text PDFEpimutations are heritable changes in gene function due to loss or gain of DNA cytosine methylation or chromatin modifications without changes in the DNA sequence. Only a few natural epimutations displaying discernible phenotypes are documented in plants. Here, we report natural epimutations in the cadastral gene, SUPERMAN(SUP), showing striking phenotypes despite normal transcription, discovered in a natural tetraploid, and subsequently in eleven diploid Arabidopsis genetic accessions.
View Article and Find Full Text PDFPlants recruit positive and negative regulators for fine tuning the balance between growth and development. Negative regulators of pathogen defense generally modulate defense hormone biosynthesis and signaling. Here, we report a mechanism for attenuation of the defense response in Arabidopsis (), which is mediated by the polycomb-group repressor MEDEA (MEA).
View Article and Find Full Text PDFMSH2 is the core protein of MutS-homolog family involved in recognition and repair of the errors in the DNA. While other members of MutS-homolog family reportedly regulate mitochondrial stability, meiosis, and fertility, MSH2 is believed to participate mainly in mismatch repair. The search for polymorphism in sequence in tomato accessions revealed both synonymous and nonsynonymous SNPs; however, SIFT algorithm predicted that none of the SNPs influenced MSH2 protein function.
View Article and Find Full Text PDFRecombinant inbred lines (RILs) are an essential tool for quantitative trait locus (QTL) mapping in Arabidopsis thaliana. Conventionally, the development of these lines is a time-consuming and tedious process requiring six to eight generations of selfing. Here, we describe an alternative approach: the rapid generation of RILs in A.
View Article and Find Full Text PDFMethods Mol Biol
December 2017
Artificial production of haploids is one of the important sought-after goals of plant breeding and crop improvement programs. Conventionally, haploid plants are generated by in vitro (tissue) culture of haploid plant gametophytes, pollen (male), and embryo sac (female). Here, we describe a facile, nontissue culture-based in vivo method of haploid production through seeds in the model plant, Arabidopsis thaliana.
View Article and Find Full Text PDFGenome instability is associated with mitotic errors and cancer. This phenomenon can lead to deleterious rearrangements, but also genetic novelty, and many questions regarding its genesis, fate and evolutionary role remain unanswered. Here, we describe extreme chromosomal restructuring during genome elimination, a process resulting from hybridization of Arabidopsis plants expressing different centromere histones H3.
View Article and Find Full Text PDFGenetic analysis in haploids provides unconventional yet powerful advantages not available in diploid organisms. In Arabidopsis thaliana, haploids can be generated through seeds by crossing a wild-type strain to a transgenic strain with altered centromeres. Here we report the development of an improved haploid inducer (HI) strain, SeedGFP-HI, that aids selection of haploid seeds prior to germination.
View Article and Find Full Text PDFHybrid crop varieties are traditionally produced by selecting and crossing parental lines to evaluate hybrid performance. Reverse breeding allows doing the opposite: selecting uncharacterized heterozygotes and generating parental lines from them. With these, the selected heterozygotes can be recreated as F1 hybrids, greatly increasing the number of hybrids that can be screened in breeding programs.
View Article and Find Full Text PDFTraditionally, hybrid seeds are produced by crossing selected inbred lines. Here we provide a proof of concept for reverse breeding, a new approach that simplifies meiosis such that homozygous parental lines can be generated from a vigorous hybrid individual. We silenced DMC1, which encodes the meiotic recombination protein DISRUPTED MEIOTIC cDNA1, in hybrids of A.
View Article and Find Full Text PDFQuantitative trait loci (QTL) mapping is a powerful tool for investigating the genetic basis of natural variation. QTL can be mapped using a number of different population designs, but recombinant inbred lines (RILs) are among the most effective. Unfortunately, homozygous RIL populations are time consuming to construct, typically requiring at least six generations of selfing starting from a heterozygous F(1).
View Article and Find Full Text PDFCentromere behavior is specialized in meiosis I, so that sister chromatids of homologous chromosomes are pulled toward the same side of the spindle (through kinetochore mono-orientation) and chromosome number is reduced. Factors required for mono-orientation have been identified in yeast. However, comparatively little is known about how meiotic centromere behavior is specialized in animals and plants that typically have large tandem repeat centromeres.
View Article and Find Full Text PDFCloning through seeds has potential revolutionary applications in agriculture, because it would allow vigorous hybrids to be propagated indefinitely. However, asexual seed formation or apomixis, avoiding meiosis and fertilization, is not found in the major food crops. To develop de novo synthesis of apomixis, we crossed Arabidopsis MiMe and dyad mutants that produce diploid clonal gametes to a strain whose chromosomes are engineered to be eliminated after fertilization.
View Article and Find Full Text PDFCentromeres control chromosome inheritance in eukaryotes, yet their DNA structure and primary sequence are hypervariable. Most animals and plants have megabases of tandem repeats at their centromeres, unlike yeast with unique centromere sequences. Centromere function requires the centromere-specific histone CENH3 (CENP-A in human), which replaces histone H3 in centromeric nucleosomes.
View Article and Find Full Text PDFProduction of haploid plants that inherit chromosomes from only one parent can greatly accelerate plant breeding. Haploids generated from a heterozygous individual and converted to diploid create instant homozygous lines, bypassing generations of inbreeding. Two methods are generally used to produce haploids.
View Article and Find Full Text PDFAdherin plays an important role in loading the cohesin complex onto chromosomes, and is essential for the establishment of sister-chromatid cohesion. We have identified and analyzed the Arabidopsis adherin homolog AtSCC2. Interestingly, the sequence analysis of AtSCC2 and of other putative plant adherin homologs revealed the presence of a PHD finger, which is not found in their fungal and animal counterparts.
View Article and Find Full Text PDFApomixis, the formation of asexual seeds in plants, leads to populations that are genetically uniform maternal clones. The transfer of apomixis to crop plants holds great promise in plant breeding for fixation of heterozygosity and hybrid vigour because it would allow the propagation of hybrids over successive generations. Apomixis involves the production of unreduced (diploid) female gametes that retain the genotype of the parent plant (apomeiosis), followed by parthenogenetic development of the egg cell into an embryo and the formation of functional endosperm.
View Article and Find Full Text PDF