Publications by authors named "Maruo B"

An alpha-amylase gene of Bacillus subtilis (natto) IAM1212 was cloned in a lambda EMBL3 bacteriophage vector, and the nucleotide sequence was determined. An open reading frame encoding the alpha-amylase (AMY1212) consists of 1,431 base pairs and contains 477 amino acid residues, which is the same in size as the alpha-amylase (AMY2633) of B. subtilis 2633, an alpha-amylase-hyperproducing strain, and smaller than that of B.

View Article and Find Full Text PDF

Two mutants (NT02 and NT17), each producing a thermosensitive neutral protease, were isolated from Bacillus subtilis NP58, a transformant which acquired the property of hyperproduction of neutral protease from Bacillus natto IAM 1212. The neutral proteases produced by these two mutants were partially purified and enzymologically characterized. The two mutant neutral proteases displayed increased thermosensitivity as well as altered pH optima compared with those of the NP58 enzyme.

View Article and Find Full Text PDF

The types of tunicamycin-resistant mutants of Bacillus subtilis were analyzed, and their mutational sites on the chromosome were mapped. A type 1 mutation that simultaneously expressed hyperproductivity of extracellular alpha-amylase was located close to amy E. Type 2 mutations were near aroI.

View Article and Find Full Text PDF

In Bacillus subtilis Marburg strain, single-point mutations in the phoP locus brought about simultaneous losses of the major activities of alkaline phosphatase (APase) and alkaline phosphodiesterase (APDase). Revertants recovered the two activities. APases with APDase activity were purified from the membrane fraction of B.

View Article and Find Full Text PDF

A membrane-bound insoluble alkaline phosphatase (APase) and an extracellular soluble APase were purified, respectively, from a membrane preparation of Bacillus subtilis 6160-BC6, which carries a mutation to produce APase constitutively, and from a culture fluid of a mutant strain. RAN 1, isolated from strain 6160-BC6, which produces an extracellular soluble APase. The two preparations were homogeneous, as judged by sodium dodecyl sulfate discontinuous gel electrophoresis and by gel electrophoreses in the presence of 8 M urea at pH 9.

View Article and Find Full Text PDF

A temperature-sensitive mutant of Escherichia coli K-12 isolated previously (H. Ohsawa and B. Maruo, J.

View Article and Find Full Text PDF

A temperature-sensitive mutant of Escherichia coli was isolated that had a temperature-sensitive defect in ribosomal-wash protein(s) required for translation in vitro of E. coli endogenous messenger ribonucleic acid. It was found that 30S ribosomal protein S1 rescued the defect in the ribosomal-wash protein(s) of the mutant and that the complete restoration to the wild-type level was attained when 1 mol of protein S1 was added to 1 mol of 70S ribosome.

View Article and Find Full Text PDF

Mutants of Escherichia coli tolerant to the ghosts of T-even phages (T2, T4, and T6) have been isolated from a strain supersensitive to T6 phage. First, T6 supersensitive mutants were isolated from mutagenized E. coli W2252 by replica plating to T6 phage-overlaid agar.

View Article and Find Full Text PDF

Mutants that had a genetic lesion increasing the production of alpha-amylase and protease simultaneously were isolated from a transformable strain of Bacillus subtilis Marburg by N-methyl-N'-nitro-N-nitrosoguanidine treatment. These mutants produced two to three times more alpha-amylase and five to 16 times more protease than their parent and were tentatively referred to as AP mutants. As this mutation seems to have occurred at a single gene of the bacterial chromosome and was not located near the alpha-amylase structural gene, the gene was designated as "pap.

View Article and Find Full Text PDF

A mutant of Bacillus subtilis 6160 that had been isolated by its hyperproduction of alpha-amylase and protease lacked flagella and motility, and its content of autolytic enzyme(s) was reduced to one-third to one-fourth that of the parent. These phenotypic differences were completely co-transferred by the deoxyribonucleic acid (DNA) of the mutant when five DNA recipient strains of B. subtilis were transformed.

View Article and Find Full Text PDF

The effects of pyocin S2, a bacteriocin produced by Pseudomonas aeruginosa strain M47, on several processes in susceptible bacterium have been examined. Lipid synthesis, measured in terms of [32P]phosphate, [14C]acetate or [2-3H]glycerol incorporation into lipid fractions, was halted almost completely soon after pyocin S2 addition. When cell suspensions were treated with various amounts of pyocin S2, the extent of inhibition of lipid synthesis was proportional to the ratio of killed bacteria.

View Article and Find Full Text PDF

Alpha-Amylases (NA64 and NA20) produced by the representative transformants Bacillus subtilis NA64 and NA20 were hybrid enzymes between the two parental alpha-amylases (NAT and MAR) produced by the DNA donor strain of Bacillus natto IAM 1212 and the DNA recipient strain of B. subtilis 6160, a derivative of B. subtilis 168.

View Article and Find Full Text PDF

Correlation between beta-galactosidase synthesis and cyclic adenosine 3',5'-monophosphate (cAMP) levels in a membrane fraction obtained from disrupted spheroplasts of Escherichia coli was investigated. Repression of beta-galactosidase synthesis in the membrane fraction by glucose-6-phosphate and by 2-deoxyglucose differed in sensitivity to reversal by cAMP. The difference between the two repressions could be due to the fact that glucose-6-phosphate inhibited severely the accumulation of exogenous [3-H]cAMP by the membrane fraction, whereas 2-deoxyglucose had little effect on the accumulation of the nucleotide.

View Article and Find Full Text PDF

A membrane fraction obtained from an osmotic lysate of Escherichia coli spheroplasts retains capability to synthesize beta-galactosidase. The system also retains cellular regulatory functions, one of which is known as catabolite repression. Two types of repression of beta-galactosidase synthesis were observed in this membrane system: one was caused by the addition of 2-deoxyglucose or glucose at a low concentration (3 times 10- minus 4 M), and the other was caused by glucose-6-phosphate or glucose at a high concentration (3 times 10- minus 2 M).

View Article and Find Full Text PDF

Deoxyribonucleic acid (DNA) of Bacillus subtilis var. amylosacchariticus showed almost the same ability as B. subtilis Marburg to induce transfer of several genetic markers in DNA-mediated transformation.

View Article and Find Full Text PDF

Enzymological properties of four thermosensitive alpha-amylases (M3, M9, M18, and M20) brought by different mutation sites in alpha-amylase structural gene of Bacillus subtilis were compared with those of the parental alpha-amylase NA64. Two thermosensitive alpha-amylases (M9 and M20) were altered not only in their thermosensitivity but also in their immunological properties, catalytic properties, molecular weights determined by the gel filtration on a Bio-Gel P-100 column, and others. The other two thermosensitive alpha-amylases (M3 and M18) were altered only in their thermosensitivity.

View Article and Find Full Text PDF