Publications by authors named "Martynas Beresna"

We demonstrate a fiber Bragg grating (FBG) strain interrogator based on a scattering medium to generate stable and deterministic speckle patterns, calibrated with applied strain, which are highly dependent on the FBG back-reflection spectral components. The strong wavelength-dependency of speckle patterns was previously used for high resolution wavemeters where scattering effectively folds the optical path, but instability makes practical realization of such devices difficult. Here, a new approach is demonstrated by utilizing femtosecond laser-written scatterers inside flat optical fiber, to enhance mechanical stability.

View Article and Find Full Text PDF

In this Letter, we present a compact scattering spectrometer system based on fluorosilicate glass ceramics. By the algorithmic spectral calibration and reconstruction, we achieve wavelength detection with a resolution of 0.1 nm.

View Article and Find Full Text PDF

A hollow-core anti-resonant fiber for the THz regime is proposed and demonstrated. The proposed fiber is the hexagonal core shape which is directly extruded using a conventional 3D printer. Experimental results show that by using cyclic olefin copolymer (COC), the proposed fiber design provides a low attenuation of ∼3 dB∕m at ∼ 0.

View Article and Find Full Text PDF

In this Letter, we present an enhanced bandwidth distributed acoustic sensor (DAS) that uses a frequency multiplexed interrogation system to probe a micro-machined point reflector fiber. The fiber contains a series of discrete point reflectors with reflectance as high as -48 dB, while the frequency multiplexed interrogator allows us to increase the effective pulse repetition rate by a factor of 10. Together, this enables a phase noise as low as -101 dB (re rad/Hz) for a 2.

View Article and Find Full Text PDF

We introduce the fabrication and use of microcracks embedded in glass as an optical element for manipulating light propagation, in particular for enhancing waveguide performance in silica integrated optics. By using a femtosecond laser to induce a strong asymmetric stress pattern in silica, uniform cracks with set dimensions can be created within the substrate and propagated along a fixed path. The smoothness of the resulting cleave interface and large index contrast can be exploited to enhance waveguide modal confinement.

View Article and Find Full Text PDF

Anisotropic nanostructures can be generated in fused silica glass by manipulating the spatiotemporal properties of a picosecond pulse. This phenomenon is attributed to laser-induced interband self-trapped excitons. The anisotropic structures exhibit birefringent properties, and thus can be employed for multi-dimensional optical data storage applications.

View Article and Find Full Text PDF

In this Letter, a distributed acoustic sensor (DAS) with a sensing range in excess of 150 km is reported. This extended sensing range is achieved by adding a low-loss enhanced-backscattering fiber at the far end of a standard single-mode fiber. A conventional DAS system along with inline optical amplifiers are used to interrogate the sensing fiber.

View Article and Find Full Text PDF
Article Synopsis
  • Fibre optic technology is advancing quickly, mainly for telecommunications and sensing applications, leading to increased interest in fibre-based sensors.
  • A new vector bending and curvature sensor is introduced using an asymmetric coupled multi-core fibre, achieving impressive sensitivity levels.
  • This sensor stands out for its reliable manufacturing, small size, and broad operating range, making it ideal for practical sensing uses, especially in aerospace.
View Article and Find Full Text PDF

Terahertz (THz) technology has witnessed a significant growth in a wide range of applications, including spectroscopy, bio-medical sensing, astronomical and space detection, THz tomography, and non-invasive imaging. Current THz microstructured fibers show a complex fabrication process and their flexibility is severely restricted by the relatively large cross-sections, which turn them into rigid rods. In this paper, we demonstrate a simple and novel method to fabricate low-cost THz microstructured fibers.

View Article and Find Full Text PDF

We present a low-noise distributed acoustic sensor using enhanced backscattering fiber with a series of localized reflectors. The point reflectors were inscribed in a standard telecom fiber in a fully automated system by focusing an ultra-fast laser through the fiber cladding. The inscribed reflectors provided a reflectance of -53 dB, significantly higher than the Rayleigh backscattering level of -70 dB/m, despite adding only 0.

View Article and Find Full Text PDF

Laser irradiation of silica glass is shown to trigger redistribution of material resulting in accumulation of stress and refractive index modification, and the rearrangement of the glass network has a significant impact on the quality of laser written optical components. We propose an alternative laser writing approach for achieving the desired refractive index and optical phase profiles through improved material stress control, demonstrated using both Gaussian and Bessel writing beams. The new material processing strategy is successfully adapted for implementing photonic circuits and diffractive elements with greater efficiency due to improved uniformity and symmetry of the induced index modification.

View Article and Find Full Text PDF

This erratum corrects the mistyped pump repetition rate in Opt. Lett.42, 4671 (2017)OPLEDP0146-959210.

View Article and Find Full Text PDF

The study of the fabrication, material selection, and properties of microstructured polymer optical fibers (MPOFs) has long attracted great interest. This ever-increasing interest is due to their wide range of applications, mainly in sensing, including temperature, pressure, chemical, and biological species. This manuscript reviews the manufacturing of MPOFs, including the most recent single-step process involving extrusion from a modified 3D printer.

View Article and Find Full Text PDF

Microstructured polymer optical fibers (MPOFs) have long attracted great interest due to their wide range of applications in biological and chemical sensing. In this manuscript, we demonstrate a novel technique of manufacturing MPOF via a single-step procedure by means of a 3D printer. A suspended-core polymer optical fiber has been extruded and directly drawn from a micro-structured 3D printer nozzle by using an acrylonitrile butadiene styrene (ABS) polymer.

View Article and Find Full Text PDF

Mid-infrared (mid-IR) optical fibers have long attracted great interest due to their wide range of applications in security, biology and chemical sensing. Traditionally, research was directed towards materials with low absorption in the mid-IR region, such as chalcogenides, which are difficult to manipulate and often contain highly toxic elements. In this paper, we demonstrate a Polyethylene Terephthalate Glycol (PETG) hollow-core fiber (HCF) with guiding properties in the mid-IR.

View Article and Find Full Text PDF

A 2 W deep-ultraviolet (DUV) source at 274 nm with 5.6 kW peak power is demonstrated by frequency quadrupling a diode-seeded, polarization-maintaining (PM), Yb-doped fiber master oscillator power amplifier (MOPA) system delivering 1.8 ns pulses at a repetition rate of 200 kHz.

View Article and Find Full Text PDF

We simulate and experimentally demonstrate deep ultraviolet generation from a 1550 nm laser source in a fully fiberized system by cascading second- and third-harmonic generation using a periodically poled silica fiber and an optical sub-micron diameter fiber. Harmonic generation is achieved by harnessing intermodal phase matching in optical microfibers and a permanent χ induced via thermal poling. As a result, efficient nonlinear processes can be observed, despite the low third-order nonlinear susceptibility of silica glass.

View Article and Find Full Text PDF

The structural evolution from void modification to self-assembled nanogratings in fused silica is observed for moderate (NA > 0.4) focusing conditions. Void formation, appears before the geometrical focus after the initial few pulses and after subsequent irradiation, nanogratings gradually occur at the top of the induced structures.

View Article and Find Full Text PDF

Surface texturing is demonstrated by the combination of wet etching and ultrafast laser nanostructuring of silica glass. Using potassium hydroxide (KOH) at room temperature as an etchant of laser modified glass, we show the polarization dependent linear increase in retardance reaching a threefold value within 25 hours. The dispersion control of birefringence by the etching procedure led to achromatic behaviour over the entire visible spectral range.

View Article and Find Full Text PDF

We demonstrate a technique to generate accelerating Airy beams with a femtosecond laser-imprinted space variant birefringent structure in silica glass. Our approach enables the generation of dual Airy beams with polarization sensitive beam deflection. The produced beam is used for the glass scribing.

View Article and Find Full Text PDF

We demonstrate recording and retrieval of the digital document with a nearly unlimited lifetime. The recording process of multiplexed digital data was implemented by femtosecond laser nanostructuring of fused quartz. The storage allows unprecedented parameters including hundreds of terabytes per disc data capacity, thermal stability up to 1000 °C, and virtually unlimited lifetime at room temperature.

View Article and Find Full Text PDF

A polarization imaging device based on a femtosecond laser nanostructured birefringent array is demonstrated. The device enables instant measurement of the distribution of the Stokes vectors in the visible spectrum. Polarimetric measurements with radially and circularly polarized light distributions are demonstrated.

View Article and Find Full Text PDF

Under certain exposure conditions, femtosecond lasers create nanogratings in the bulk of fused silica for which the orientation is governed by the laser polarization. Such nanostructure induces stress that affects optical and chemical properties of the material. Here, we present a method based on optical retardance measurement to quantify the stress around laser affected zones.

View Article and Find Full Text PDF

The unusual dependence of femtosecond laser writing on the light polarization and direction of raster scanning is demonstrated in silica and chalcogenide glasses. Two different mechanisms contributing to the observed anisotropy are identified: the chevron-shaped stress induced by the sample movement and the pulse front tilt of ultrashort light pulse. Control of anisotropies associated with the spatio-temporal asymmetry of an ultrashort pulse beam and scanning geometry is crucial in the ultrafast laser machining of transparent materials.

View Article and Find Full Text PDF