Publications by authors named "Martyna O Urbanek-Trzeciak"

Here, we present the miRMut protocol to annotate mutations found in miRNA genes based on whole-exome sequencing (WES) or whole-genome sequencing (WGS) results. The pipeline assigns mutation characteristics, including miRNA gene IDs (miRBase and MirGeneDB), mutation localization within the miRNA precursor structure, potential RNA-binding motif disruption, the ascription of mutation according to Human Genome Variation Society (HGVS) nomenclature, and miRNA gene characteristics, such as miRNA gene confidence and miRNA arm balance. The pipeline includes creating tabular and graphical summaries.

View Article and Find Full Text PDF

Basal cell carcinoma (BCC) of the skin is the most common cancer in humans, characterized by the highest mutation rate among cancers, and is mostly driven by mutations in genes involved in the hedgehog pathway. To date, almost all BCC genetic studies have focused exclusively on protein-coding sequences; therefore, the impact of noncoding variants on the BCC genome is unrecognized. In this study, with the use of whole-exome sequencing of 27 tumor/normal pairs of BCC samples, we performed an analysis of somatic mutations in both protein-coding sequences and gene-associated noncoding regions, including 5'UTRs, 3'UTRs, and exon-adjacent intron sequences.

View Article and Find Full Text PDF

It is a well-known and intensively studied phenomenon that the levels of many miRNAs are differentiated in cancer. miRNA biogenesis and functional expression are complex processes orchestrated by many proteins cumulatively called miRNA biogenesis proteins. To characterize cancer somatic mutations in the miRNA biogenesis genes and investigate their potential impact on the levels of miRNAs, we analyzed whole-exome sequencing datasets of over 10 000 cancer/normal sample pairs deposited within the TCGA repository.

View Article and Find Full Text PDF

Spinocerebellar ataxia type 3 (SCA3) is a progressive neurodegenerative disorder caused by a CAG repeat expansion in the ATXN3 gene encoding the ataxin-3 protein. Despite extensive research the exact pathogenic mechanisms of SCA3 are still not understood in depth. In the present study, to gain insight into the toxicity induced by the expanded CAG repeats in SCA3, we comprehensively investigated repeat-associated non-ATG (RAN) translation in various cellular models expressing translated or non-canonically translated ATXN3 sequences with an increasing number of CAG repeats.

View Article and Find Full Text PDF
Article Synopsis
  • miRNAs play crucial roles in cancer development as either promoting or suppressing factors, yet their specific mutations are still not well understood despite the known mutations in protein-coding genes.
  • Using extensive genomic data analysis from over 10,000 cancer and normal tissue samples, the research identified more than 10,000 somatic mutations in miRNA genes, highlighting significant overmutations in certain cancers.
  • This study represents a pioneering effort to explore miRNA mutations across various cancers, contributing to a better understanding of their impact on cancer biology and potentially aiding in the development of tools to identify cancer-driving miRNAs.
View Article and Find Full Text PDF

Friedreich's ataxia (FRDA) is a genetic neurodegenerative disease that is caused by guanine-adenine-adenine (GAA) nucleotide repeat expansions in the first intron of the frataxin (FXN) gene. Although present in the intron, this mutation leads to a substantial decrease in protein expression. Currently, no effective treatment is available for FRDA, and, in addition to FXN, other targets with therapeutic potential are continuously sought.

View Article and Find Full Text PDF

A growing body of evidence indicates that miRNAs may either drive or suppress oncogenesis. However, little is known about somatic mutations in miRNA genes. To determine the frequency and potential consequences of miRNA gene mutations, we analyzed whole exome sequencing datasets of 569 lung adenocarcinoma (LUAD) and 597 lung squamous cell carcinoma (LUSC) samples generated in The Cancer Genome Atlas (TCGA) project.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are short, non-coding post-transcriptional gene regulators. In mammalian cells, mature miRNAs are produced from primary precursors (pri-miRNAs) using canonical protein machinery, which includes Drosha/DGCR8 and Dicer, or the non-canonical mirtron pathway. In plant cells, mature miRNAs are excised from pri-miRNAs by the DICER-LIKE1 (DCL1) protein complex.

View Article and Find Full Text PDF