Precisely measuring pressure in microfluidic flows is essential for flow control, fluid characterization, and monitoring, but faces specific challenges such as achieving sufficient resolution, non-invasiveness, or ease of use. Here, we demonstrate a fully integrated multiplexed optofluidic pressure sensor, entirely decoupled from the flow path, that enables local pressure measurements along any microfluidic channel without altering its flow geometry. The sensor itself relies on the compression of a soft mechano-actuated hydrogel, changing color in response to a pressure change.
View Article and Find Full Text PDFIn many situations, bacteria move in complex environments, as soils, oceans or the human gut-track, where carrier fluids show complex structures associated with non-Newtonian rheology. Many fundamental questions concerning the ability to navigate in such environments remain unsolved. Recently, it has been shown that the kinetics of bacterial motion in structured fluids as liquid crystals (LCs) is constrained by the orientational molecular order (or director field) and that novel spatio-temporal patterns arise.
View Article and Find Full Text PDF