Publications by authors named "Martyn Robinson"

Article Synopsis
  • Dkk family proteins, specifically Dkk4, play a crucial role in regulating Wnt signaling pathways, which are vital for various biological processes.
  • The study reveals the first atomic-resolution structure of Dkk4's N-terminal cysteine-rich domain (CRD1) and suggests significant evolutionary conservation and structural similarities between CRD1 and the C-terminal domain (CRD2).
  • The findings indicate that Dkk4 consists of two independent domains linked by a flexible region, and that CRD2 binds strongly to LRP6 and Kremen1, while the N-terminal region shows moderate binding to LRP6, highlighting the complex interactions that help to finely regulate Wnt signaling.
View Article and Find Full Text PDF

Administration of antibodies to sclerostin (Scl-Ab) has been shown to increase bone mass, bone mineral density (BMD) and bone strength by increasing bone formation and decreasing bone resorption in both animal studies and human clinical trials. In these studies, the magnitude and rate of increase in bone formation markers is attenuated upon repeat dosing with Scl-Ab despite a continuous and progressive increase in BMD. Here, we investigated whether the attenuation in the bone formation response following repeated administration of Scl-Ab was associated with increased expression of secreted antagonists of Wnt signalling and determined how the circulating marker of bone formation, P1NP, responded to single, or multiple doses, of Scl-Ab four days post-dosing.

View Article and Find Full Text PDF

Earlier studies proved the success of using chemically functionalised multi-walled carbon nanotubes (f-MWNTs) as nanocarriers to the brain. Little insight into the kinetics of brain distribution of f-MWNTs in vivo has been reported. This study employed a wide range of qualitative and quantitative techniques with the aim of shedding the light on f-MWNT's brain distribution following intravenous injection.

View Article and Find Full Text PDF

Introduction: CD40 ligand (CD40L) blockade has demonstrated efficacy in experimental autoimmune models. However, clinical trials of hu5c8, an anti-human CD40L IgG1 antibody, in systemic lupus erythematosus (SLE) were halted due to an increased incidence of thrombotic events. This study evaluated CDP7657, a high affinity PEGylated monovalent Fab' anti-CD40L antibody fragment, to assess whether an Fc-deficient molecule retains efficacy while avoiding the increased risk of thrombotic events observed with hu5c8.

View Article and Find Full Text PDF

The Wnt signaling pathway is of central importance in embryogenesis, development and adult tissue homeostasis, and dysregulation of this pathway is associated with cancer and other diseases. Despite the developmental and potential therapeutic significance of this pathway, many aspects of Wnt signaling, including the control of the master transcriptional co-activator β-catenin, remain poorly understood. In order to explore this aspect, a diverse immune llama VHH phagemid library was constructed and panned against β-catenin.

View Article and Find Full Text PDF

Carbon nanotubes (CNTs) exhibit unique properties which have led to their applications in the biomedical field as novel delivery systems for diagnosis and therapy purposes. We have previously reported that the degree of functionalization of CNTs is a key factor determining their biological behaviour. The present study broadens the spectrum by investigating the impact of the diameter of CNTs using two series of multi-walled CNTs (MWNTs) with distinct differences in their diameters.

View Article and Find Full Text PDF

A number of proteins have been shown to modulate canonical Wnt signalling at the cell surface, including members of the Dickkopf (Dkk) family (Baron and Rawadi in J Endocrinol 148:2635-2643, 2007; Cruciat and Niehrs in Cold Spring Harb Perspect Biol 5:a015081, 2013). The Dkk family includes four secreted proteins (Dkk1-4), which are characterised by two highly conserved cysteine-rich regions corresponding to C24-C73 and C128-C201 in human Dkk4 (hDkk4). Here we report essentially complete backbone and comprehensive side chain (15)N, (13)C and (1)H NMR assignments for full length mature hDkk4 (M1-L207) containing a short C-terminal hexa-histidine tag (E208-H222).

View Article and Find Full Text PDF

Introduction: Patients with chronic inflammatory diseases have increased bone loss and bone fragility and are at increased risk of fracture. Although anti-resorptive drugs are effective in blocking inflammation-induced bone loss, they are less effective at rebuilding bone. We have previously shown that treatment with sclerostin antibody (Scl-AbI) builds bone and can prevent or restore bone loss in a murine model of inflammatory bowel disease.

View Article and Find Full Text PDF

In the 1990s there was a tremendous mood of optimism among pharmaceutical scientists that identification of disease-associated variations in the human genome would result in a surge of new drug targets (the 'gene-to-drug' mantra). To date the expected deluge of new drugs has not arrived. However, a small number of drugs arising directly from the study of rare human disorders showing Mendelian inheritance are now entering late stage clinical trials.

View Article and Find Full Text PDF

LRP5 and LRP6 are proteins predicted to contain four six-bladed β-propeller domains and both bind the bone-specific Wnt signaling antagonist sclerostin. Here, we report the crystal structure of the amino-terminal region of LRP6 and using NMR show that the ability of sclerostin to bind to this molecule is mediated by the central core of sclerostin and does not involve the amino- and carboxyl-terminal flexible arm regions. We show that this structured core region interacts with LRP5 and LRP6 via an NXI motif (found in the sequence PNAIG) within a flexible loop region (loop 2) within the central core region.

View Article and Find Full Text PDF

The development of bone-rebuilding anabolic agents for treating bone-related conditions has been a long-standing goal. Genetic studies in humans and mice have shown that the secreted protein sclerostin is a key negative regulator of bone formation. More recently, administration of sclerostin-neutralizing monoclonal antibodies in rodent studies has shown that pharmacologic inhibition of sclerostin results in increased bone formation, bone mass, and bone strength.

View Article and Find Full Text PDF

Chronic inflammation leads to bone loss, and increased fracture rates have been reported in a number of human chronic inflammatory conditions. The study reported here investigates the skeletal effects of dosing a neutralizing antibody to the bone regulatory protein sclerostin in a mouse model of chronic colitis. When dosed prophylactically, an antibody to sclerostin (Scl-AbI) did not reduce the weight loss or histological changes associated with colitis but did prevent inflammation-induced bone loss.

View Article and Find Full Text PDF

The secreted glycoprotein sclerostin has recently emerged as a key negative regulator of Wnt signaling in bone and has stimulated considerable interest as a potential target for therapeutics designed to treat conditions associated with low bone mass, such as osteoporosis. We have determined the structure of sclerostin, which resulted in the identification of a previously unknown binding site for heparin, suggestive of a functional role in localizing sclerostin to the surface of target cells. We have also mapped the interaction site for an antibody that blocks the inhibition of Wnt signaling by sclerostin.

View Article and Find Full Text PDF

Background: Inhibitors of tumor necrosis factor alpha (TNFalpha) have demonstrated significant efficacy in chronic inflammatory diseases, including Crohn's disease (CD). To further elucidate the mechanisms of action of these agents, we compared the anti-TNFalpha agents certolizumab pegol, infliximab, adalimumab, and etanercept in several in vitro systems.

Methods: The ability of each anti-TNFalpha agent to neutralize soluble and membrane-bound TNFalpha; mediate cytotoxicity, affect apoptosis of activated human peripheral blood lymphocytes and monocytes; induce degranulation of human peripheral blood granulocytes, and modulate lipopolysaccharide (LPS)-induced interleukin (IL)-1beta production by human monocytes was measured in vitro.

View Article and Find Full Text PDF

FOXP3 has been identified as a key regulator of immune homeostasis. Mutations within the FOXP3 gene result in dysregulated CD4+ T-cell function and elevated cytokine production, leading to lymphoproliferative disease. FOXP3 expression in CD4+ T cells is primarily detected with the CD4+ CD25+ regulatory T-cell population.

View Article and Find Full Text PDF

It is widely believed that rolling lymphocytes require successive chemokine-induced signaling for lymphocyte function-associated antigen 1 (LFA-1) to achieve a threshold avidity that will mediate lymphocyte arrest. Using an in vivo model of lymphocyte arrest, we show here that LFA-1-mediated arrest of lymphocytes rolling on high endothelial venules bearing LFA-1 ligands and chemokines was abrupt. In vitro flow chamber models showed that endothelium-presented but not soluble chemokines triggered instantaneous extension of bent LFA-1 in the absence of LFA-1 ligand engagement.

View Article and Find Full Text PDF

LFA-1 (lymphocyte function-associated antigen-1) plays a role in intercellular adhesion and lymphocyte trafficking and activation and is an attractive anti-inflammatory drug target. The alpha-subunit of LFA-1, in common with several other integrins, has an N-terminally inserted domain (I-domain) of approximately 200 amino acids that plays a central role in regulating ligand binding to LFA-1. An additional region, termed the I-domain allosteric site (IDAS), has been identified exclusively within the LFA-1 I-domain and shown to regulate the function of this protein.

View Article and Find Full Text PDF

Integrins alpha2beta1, alphaXbeta2, and alphaVbeta3 have been implicated in rotavirus cell attachment and entry. The virus spike protein VP4 contains the alpha2beta1 ligand sequence DGE at amino acid positions 308 to 310, and the outer capsid protein VP7 contains the alphaXbeta2 ligand sequence GPR. To determine the viral proteins and sequences involved and to define the roles of alpha2beta1, alphaXbeta2, and alphaVbeta3, we analyzed the ability of rotaviruses and their reassortants to use these integrins for cell binding and infection and the effect of peptides DGEA and GPRP on these events.

View Article and Find Full Text PDF

We describe a series of dehydrophenylalanine derivatives where the Z isomers are potent VLA-4 antagonists but are subject to rapid biliary clearance and the E isomers have poor activity but have a slower rate of clearance. These configurationally constrained molecules have led to the design of a novel class of benzodiazepine VLA-4 antagonists.

View Article and Find Full Text PDF

SCC4 human keratinocytes are derived from a squamous cell carcinoma of the tongue and undergo very little spontaneous differentiation. Introduction of a wild-type beta 1 integrin subunit into SCC4 cells stimulates differentiation, suggesting either that the cells have a defect in the integrin signaling pathways that control differentiation or that the beta1 subunit itself is defective. Here we describe a heterozygous mutation in the SCC4 beta 1 subunit.

View Article and Find Full Text PDF

The SAR studies to optimise both potency and rate of clearance in the rat for a series of pyrimidine and pyridine based VLA-4 antagonists are described.

View Article and Find Full Text PDF

SAR studies aimed at improving the rate of clearance of a series of VLA-4 integrin antagonists by the introduction of a 1,3,5-triazine as an amide isostere are described.

View Article and Find Full Text PDF

SAR studies aimed at improving the rate of clearance by the incorporation of a 3,4-diamino-3-cyclobutene-1,2-dione group as an amino acid isostere in a series of VLA-4 integrin antagonists are described.

View Article and Find Full Text PDF

Lymphocyte function-associated antigen (LFA-1) is a member of the beta2 family of integrins that is selectively expressed on leukocytes. Herein, we show that Ca(2)(+) mobilizing agents A23187, thapsigargin, and ionomycin induce an increase in adhesion to the LFA-1 ligand intercellular adhesion molecule-1 (ICAM-1) and activation and redistribution of the proline-rich tyrosine kinase-2 (PYK2) to the microtubule-organizing center (MTOC) in T-lymphoblasts. These effects are similar to those observed upon direct induction of activation of LFA-1 with the stimulatory mAb KIM-127.

View Article and Find Full Text PDF