Publications by authors named "Martyka M"

In this study, five all-organic polarized molecular wires (PMWs) for photovoltaic applications are introduced and investigated by means of theoretical chemistry methods. Structurally based on polarized pyrrole and isoindole moieties, the proposed systems demonstrate efficient and ultrafast charge separation upon light absorption. The relevant PMW properties are evaluated using semi-empirical and quantum-chemical calculations, as well as nonadiabatic molecular dynamics simulations.

View Article and Find Full Text PDF

Herein, we propose a purely-organic donor-acceptor (D-A) molecular triad, with a light-absorbing polarized molecular wire (PMW) used as a central linkage, as a proof of concept for the possible future applications of the D-PMW-A arrangement in molecular photovoltaics. This work builds upon our earlier study on the PMW unit itself, which proved to be highly promising for the ultrafast photogeneration of free charge carriers. Quantum-chemical calculations performed for the D-PMW-A triad at a semi-empirical level of theory reveal a large electric dipole moment of the system, and show strong charge-transfer (CT) character of its lowest-energy excited electronic states, including the , which favours efficient dissociation of an exciton initially formed upon the absorption of light.

View Article and Find Full Text PDF

We present an open-source MLatom@XACS software ecosystem for on-the-fly surface hopping nonadiabatic dynamics based on the Landau-Zener-Belyaev-Lebedev algorithm. The dynamics can be performed via Python API with a wide range of quantum mechanical (QM) and machine learning (ML) methods, including ab initio QM (CASSCF and ADC(2)), semiempirical QM methods (e.g.

View Article and Find Full Text PDF

Diarylethene (DAE) molecular switches have continued to attract the attention of researchers for over 20 years. Their remarkable photophysical properties endow them with countless applications in photonics and molecular technologies. However, despite extensive experimental and theoretical research, the mechanism of DAE photoswitching is not yet fully rationalized.

View Article and Find Full Text PDF

Photoswitchable diarylethenes (DAEs), over years of intense fundamental and applied research, have been established among the most commonly chosen molecular photoswitches, often employed as controlling units in molecular devices and smart materials. At the same time, providing reliable explanation for their photophysical behavior, especially the mechanism of the photo-cycloreversion transformation, turned out to be a highly challenging task. Herein, we investigate this mechanism in detail by means of multireference semi-empirical quantum chemistry calculations, allowing, for the first time, for a balanced treatment of the static and dynamic correlation effects, both playing a crucial role in DAE photochemistry.

View Article and Find Full Text PDF

Background: Prenatal antibody transfer is an immune-mediated maternal effect by which females can shape postnatal offspring resistance to pathogens and parasites. Maternal antibodies passed on to offspring provide primary protection to neonates against diverse pathogenic antigens, but they may also affect offspring growth and influence the development of an offspring's own immune response. The effects of maternal antibodies on offspring performance commonly require that the disease environment experienced by a mother prior to breeding matches the environment encountered by her offspring after hatching/birth.

View Article and Find Full Text PDF

Interactions between ecological communities of herbivores and microbes are commonly mediated by a shared plant. A tripartite interaction between a pathogenic fungus-host plant-herbivorous insect is an example of such mutual influences. In such a system a fungal pathogen commonly has a negative influence on the morphology and biochemistry of the host plant, with consequences for insect herbivore performance.

View Article and Find Full Text PDF