Publications by authors named "Martins Ikaunieks"

Here, we describe the identification of an antibiotic class acting via LpxH, a clinically unexploited target in lipopolysaccharide synthesis. The lipopolysaccharide synthesis pathway is essential in most Gram-negative bacteria and there is no analogous pathway in humans. Based on a series of phenotypic screens, we identified a hit targeting this pathway that had activity on efflux-defective strains of .

View Article and Find Full Text PDF

A structure-activity relationship (SAR) study of NOSO-95179, a nonapeptide from the Odilorhabdin class of antibacterials, was performed by systematic variations of amino acids in positions 2 and 5 of the peptide. A series of non-proteinogenic amino acids was synthesized in high enantiomeric purity from Williams' chiral diphenyloxazinone by highly diastereoselective alkylation or by aldol-type reaction. NOSO-95179 analogues for SAR studies were prepared using solid-phase peptide synthesis.

View Article and Find Full Text PDF

Novel series of compounds consisting of 2-amidocyclohex-1-ene carboxylate and phenyl parts which are connected by enyne (compounds 2a-f), but-1-yne (compounds 4a-j), and phenylethylene (compounds 5a-f) linkers as HCA2 full agonists were designed and their functional activity using cAMP assay and binding affinity using radioligand (H-niacin) binding assay were evaluated. In general, compounds of all three series exhibit similar HCA2 binding and activation profile. However, the activity is strongly dependent on the substituent at the aromatic part of the structure.

View Article and Find Full Text PDF

2-(3-(Naphthalen-2-yl)propanamido)cyclohex-1-enecarboxylic acid and its 6-hydroxynaphthalen-2-yl analogue are well-known hydroxyl-carboxylic acid (HCA) receptor HCA2 agonists. A series of novel aryl derivatives of 2-amidocyclohex-1-ene carboxylic acid that contained rigidity elements, such as an E-double bond, triple bond, and trans or cis-substituted cyclopropane rings, instead of the saturated ethane linker in the amide part of the molecules were designed and synthesized, and the derivatives' potency for the activation of HCA1, HCA2, and HCA3 receptors by 3'-5'-cyclic adenosine monophosphate (cAMP) assay were evaluated. The SAR studies revealed that the rigidifying of appropriate molecules enabled modulation of the potency and selectivity of the HCA2 receptor activation.

View Article and Find Full Text PDF

Optimization of the anticancer activity for a class of compounds built on a 1,3-dihydroindole-2-one scaffold was performed. In comparison with recently published derivatives of oxyphenisatin the new analogues exhibited an equally potent antiproliferative activity in vitro and improved tolerability and activity in vivo. The best compounds from this series showed low nanomolar antiproliferative activity toward a series of cancer cell lines (compound (S)-38: IC(50) of 0.

View Article and Find Full Text PDF

New 2-amino-6-oxo-8-thioxo-9-substituted purine derivatives were prepared and assayed for the in vitro cytotoxic activity. Some products exhibited moderate activity on HT-1080 cells and rather high activity on MG-22A cells.

View Article and Find Full Text PDF

A method for the selective introduction of the N2-(dimethylamino)methylene group into 8-thio-9-(2-hydroxyethoxymethyl)guanine (1) has been developed. The effect of the N2-amidine protection on the S-alkylation of 1 was studied.

View Article and Find Full Text PDF