Publications by authors named "Martino De Carlo"

This study explores the achievement of a tunable true time-delay (TTD) system for a microwave phased-array antenna (MPAA) by incorporating the reversible phase-transition property of phase-change material (PCM) with Bragg gratings (BGs) and a cascade of three phase-shifted Bragg grating resonators (CPSBGRs). The goal was to design a low-power-consuming, non-volatile highly tunable compact TTD system for beam steering. A programmable on/off reflector was designed by changing a PCM-incorporated BG/CPSBGR from one phase to another.

View Article and Find Full Text PDF

On-chip spectrometers are increasingly becoming tools that might help in everyday life needs. The possibility offered by several available integration technologies and materials to be used to miniaturize spectrometers has led to a plethora of very different devices, that in principle can be compared according to their metrics. Having access to a reference database can help in selecting the best-performing on-chip spectrometers and being up to date in terms of standards and developments.

View Article and Find Full Text PDF

Anti-parity-time-symmetric Hamiltonians show an enhanced sensitivity to external perturbations that can be used for high-performance angular velocity sensing. Dissipative coupling is a valuable way for realizing anti-PT-symmetric Hamiltonians with optical resonators and is usually obtained by means of auxiliary waveguides. Here, we model and experimentally show the dissipative coupling between two counterpropagating modes of a single resonator, by means of a Bragg-grating placed in the feeding bus.

View Article and Find Full Text PDF

The ion-sensitive field-effect transistor is a well-established electronic device typically used for pH sensing. The usability of the device for detecting other biomarkers in easily accessible biologic fluids, with dynamic range and resolution compliant with high-impact medical applications, is still an open research topic. Here, we report on an ion-sensitive field-effect transistor that is able to detect the presence of chloride ions in sweat with a limit-of-detection of 0.

View Article and Find Full Text PDF

Recently, non-Hermitian Hamiltonians have gained a lot of interest, especially in optics and electronics. In particular, the existence of real eigenvalues of non-Hermitian systems has opened a wide set of possibilities, especially, but not only, for sensing applications, exploiting the physics of exceptional points. In particular, the square root dependence of the eigenvalue splitting on different design parameters, exhibited by 2 × 2 non-Hermitian Hamiltonian matrices at the exceptional point, paved the way to the integration of high-performance sensors.

View Article and Find Full Text PDF

A room-temperature strip-guided "manufacturable" Silicon-on-Insulator (SOI)/GeSn integrated-photonics quantum-gyroscope chip operating at 1550 nm is proposed and analysed. We demonstrate how the entangled photons generated in Si Spontaneous Four Wave Mixing (SFWM) can be used to improve the resolution of a Sagnac interferometric gyroscope. We propose different integrated architectures based on degenerate and non-degenerate SFWM.

View Article and Find Full Text PDF

In this paper we report methane gas photonic sensors exploiting the principle of absorption-induced redirection of light propagation in coupled resonant cavities. In particular, an example of implemented architecture consists of a Fabry-Pérot (FP) resonator coupled to a fibre ring resonator, operating in the near IR. By changing the concentration of the methane gas in the FP region, the absorption coefficient of the FP changes.

View Article and Find Full Text PDF

Optical gyroscopes measure the angular velocity using the Sagnac effect. However, the resonance splitting due to the Sagnac effect is directly proportional to the linear dimensions of the device. Consequently, integrated optical gyroscopes are still the subject of research.

View Article and Find Full Text PDF

This paper is an overview of current gyroscopes and their roles based on their applications. The considered gyroscopes include mechanical gyroscopes and optical gyroscopes at macro- and micro-scale. Particularly, gyroscope technologies commercially available, such as Mechanical Gyroscopes, silicon MEMS Gyroscopes, Ring Laser Gyroscopes (RLGs) and Fiber-Optic Gyroscopes (FOGs), are discussed.

View Article and Find Full Text PDF