Publications by authors named "Martino Bertoni"

Article Synopsis
  • There's a growing need in biomedicine to thoroughly evaluate experimental data against existing information to validate results and gauge the novelty of findings.
  • BQsupports is a new web tool that uses a vast database of over 1000 biomedical descriptors to analyze observations, providing support scores that summarize the reliability of the data across diverse biomedical areas.
  • This tool not only measures the support for individual observations but also suggests features useful for future machine learning applications, making it a valuable resource for researchers.
View Article and Find Full Text PDF
Article Synopsis
  • Biomedical data is rapidly growing, making it difficult to integrate different perspectives on biological events; the Bioteque aims to address this issue.
  • The Bioteque is a comprehensive resource featuring over 450,000 biological entities and 30 million relationships derived from a vast knowledge graph, consolidating data from more than 150 sources.
  • It enables easier analysis of protein interactions, predicts drug responses, and supports machine learning applications without sacrificing performance compared to using raw data.
View Article and Find Full Text PDF

The Columbia Cancer Target Discovery and Development (CTD2) Center is developing PANACEA, a resource comprising dose-responses and RNA sequencing (RNA-seq) profiles of 25 cell lines perturbed with ∼400 clinical oncology drugs, to study a tumor-specific drug mechanism of action. Here, this resource serves as the basis for a DREAM Challenge assessing the accuracy and sensitivity of computational algorithms for drug polypharmacology predictions. Dose-response and perturbational profiles for 32 kinase inhibitors are provided to 21 teams who are blind to the identity of the compounds.

View Article and Find Full Text PDF

Chemical descriptors encode the physicochemical and structural properties of small molecules, and they are at the core of chemoinformatics. The broad release of bioactivity data has prompted enriched representations of compounds, reaching beyond chemical structures and capturing their known biological properties. Unfortunately, bioactivity descriptors are not available for most small molecules, which limits their applicability to a few thousand well characterized compounds.

View Article and Find Full Text PDF

Until a vaccine becomes available, the current repertoire of drugs is our only therapeutic asset to fight the SARS-CoV-2 outbreak. Indeed, emergency clinical trials have been launched to assess the effectiveness of many marketed drugs, tackling the decrease of viral load through several mechanisms. Here, we present an online resource, based on small-molecule bioactivity signatures and natural language processing, to expand the portfolio of compounds with potential to treat COVID-19.

View Article and Find Full Text PDF

Small molecules are usually compared by their chemical structure, but there is no unified analytic framework for representing and comparing their biological activity. We present the Chemical Checker (CC), which provides processed, harmonized and integrated bioactivity data on ~800,000 small molecules. The CC divides data into five levels of increasing complexity, from the chemical properties of compounds to their clinical outcomes.

View Article and Find Full Text PDF

Critical blind assessment of structure prediction techniques is crucial for the scientific community to establish the state of the art, identify bottlenecks, and guide future developments. In Critical Assessment of Techniques in Structure Prediction (CASP), human experts assess the performance of participating methods in relation to the difficulty of the prediction task in a biennial experiment on approximately 100 targets. Yet, the development of automated computational modeling methods requires more frequent evaluation cycles and larger sets of data.

View Article and Find Full Text PDF

Proteins are subject to evolutionary forces that shape their three-dimensional structure to meet specific functional demands. The knowledge of the structure of a protein is therefore instrumental to gain information about the molecular basis of its function. However, experimental structure determination is inherently time consuming and expensive, making it impossible to follow the explosion of sequence data deriving from genome-scale projects.

View Article and Find Full Text PDF

Multi-protein machines are responsible for most cellular tasks, and many efforts have been invested in the systematic identification and characterization of thousands of these macromolecular assemblies. However, unfortunately, the (quasi) atomic details necessary to understand their function are available only for a tiny fraction of the known complexes. The computational biology community is developing strategies to integrate structural data of different nature, from electron microscopy to X-ray crystallography, to model large molecular machines, as it has been done for individual proteins and interactions with remarkable success.

View Article and Find Full Text PDF

Homology modelling has matured into an important technique in structural biology, significantly contributing to narrowing the gap between known protein sequences and experimentally determined structures. Fully automated workflows and servers simplify and streamline the homology modelling process, also allowing users without a specific computational expertise to generate reliable protein models and have easy access to modelling results, their visualization and interpretation. Here, we present an update to the SWISS-MODEL server, which pioneered the field of automated modelling 25 years ago and been continuously further developed.

View Article and Find Full Text PDF

Every second year, the community experiment "Critical Assessment of Techniques for Structure Prediction" (CASP) is conducting an independent blind assessment of structure prediction methods, providing a framework for comparing the performance of different approaches and discussing the latest developments in the field. Yet, developers of automated computational modeling methods clearly benefit from more frequent evaluations based on larger sets of data. The "Continuous Automated Model EvaluatiOn (CAMEO)" platform complements the CASP experiment by conducting fully automated blind prediction assessments based on the weekly pre-release of sequences of those structures, which are going to be published in the next release of the PDB Protein Data Bank.

View Article and Find Full Text PDF

We present the results of the first independent assessment of protein assemblies in CASP. A total of 1624 oligomeric models were submitted by 108 predictor groups for the 30 oligomeric targets in the CASP12 edition. We evaluated the accuracy of oligomeric predictions by comparison to their reference structures at the interface patch and residue contact levels.

View Article and Find Full Text PDF

Cellular processes often depend on interactions between proteins and the formation of macromolecular complexes. The impairment of such interactions can lead to deregulation of pathways resulting in disease states, and it is hence crucial to gain insights into the nature of macromolecular assemblies. Detailed structural knowledge about complexes and protein-protein interactions is growing, but experimentally determined three-dimensional multimeric assemblies are outnumbered by complexes supported by non-structural experimental evidence.

View Article and Find Full Text PDF

Protein structure homology modelling has become a routine technique to generate 3D models for proteins when experimental structures are not available. Fully automated servers such as SWISS-MODEL with user-friendly web interfaces generate reliable models without the need for complex software packages or downloading large databases. Here, we describe the latest version of the SWISS-MODEL expert system for protein structure modelling.

View Article and Find Full Text PDF