Publications by authors named "Martinezlacaci I"

Glioblastomas are highly resistant to radiation and chemotherapy. Currently, there are no effective therapies for this type of tumor. Signaling mechanisms initiated by PDGFR and IGF-1R are important in glioblastoma, and inhibition of the signal transduction pathways initiated by these receptors could be a useful alternative strategy for glioblastoma treatment.

View Article and Find Full Text PDF

Objective: As Selumetinib is a MEK1/2 inhibitor that has gained interest as an anti-tumor agent, the present study was designed to investigate autophagy involvement on Selumetinib-induced apoptosis in colorectal cancer (CRC) cells.

Methods: CRC cells death and cycle studies were assessed by AnnexinV-FITC and PI staining, respectively. Autophagy flux was analysed by Western Blot (LC3II and p62 protein levels) and retroviral infection of SW480 cells for siBecn1 RNA interference experiments.

View Article and Find Full Text PDF

Background: Colorectal carcinoma is a common cause of cancer. Adjuvant treatments include: 5-fluorouracil administered together with folinic acid, or more recently, oral fluoropyrimidines such as capecitabine, in combination with oxaliplatin or irinotecan. Metastatic colorectal cancer patients can benefit from other additional treatments such as cetuximab or bevacizumab.

View Article and Find Full Text PDF

The identification of tumor cells in lymph nodes is essential for the correct classification of patients with colorectal cancer who may benefit from adjuvant treatments. Proper classification of tumor stage becomes entangled by variables such as an insufficient number of lymph nodes examined, which can result in erroneous or missed diagnosis. The determination of pathologic factors in the primary tumor associated with positive lymph nodes is an area of research that has attempted to provide variables to solve this problem.

View Article and Find Full Text PDF
Article Synopsis
  • The study compares the effects of two Hsp90 inhibitors, 17-AAG and NVP-AUY922, on pancreatic and colorectal cancer cell lines.
  • While some cell lines were resistant to 17-AAG, they showed sensitivity to NVP-AUY922, highlighting its potential as a more effective treatment.
  • NVP-AUY922 not only works independently of the NQO1 enzyme but also enhances the effects of other chemotherapy drugs like gemcitabine and oxaliplatin.
View Article and Find Full Text PDF

Selumetinib (AZD6244, ARRY-142886) is a MEK1/2 inhibitor that has gained interest as an anti-tumour agent. We have determined the degree of sensitivity/resistance to Selumetinib in a panel of colorectal cancer cell lines using cell proliferation and soft agar assays. Sensitive cell lines underwent G1 arrest, whereas Selumetinib had no effect on the cell cycle of resistant cells.

View Article and Find Full Text PDF

Glioblastoma multiforme is the most frequent, aggressive and fatal type of brain tumor. Glioblastomas are characterized by their infiltrating nature, high proliferation rate and resistance to chemotherapy and radiation. Recently, oncologic therapy experienced a rapid evolution towards "targeted therapy," which is the employment of drugs directed against particular targets that play essential roles in proliferation, survival and invasiveness of cancer cells.

View Article and Find Full Text PDF

Background: It has been reported that the histone deacetylase inhibitor (iHDAc) trichostatin A (TSA) induces an increase in MDR1 gene transcription (ABCB1). This result would compromise the use of iHDACs in combination with other cytotoxic agents that are substrates of P-glycoprotein (Pgp). It has also been reported the use of alternative promoters by the ABCB1 gene and the existence of a translational control of Pgp protein.

View Article and Find Full Text PDF

Signaling through the epidermal growth factor receptor (EGFR) is relevant in glioblastoma. We have determined the effects of the EGFR inhibitor AG1478 in glioblastoma cell lines and found that U87 and LN-229 cells were very sensitive to this drug, since their proliferation diminished and underwent a marked G(1) arrest. T98 cells were a little more refractory to growth inhibition and A172 cells did not undergo a G(1) arrest.

View Article and Find Full Text PDF

Previous studies have documented that while several drug-resistant cells enter apoptosis upon treatment with histone deacetylase inhibitors (iHDACs), their drug-sensitive counterparts do not. In the present study, we have investigated at the molecular level why parental drug-sensitive tumor cells do not respond to Trichostatin A and suberoylanilide hydroxamic acid, two iHDACs that promote apoptosis in drug-resistant leukaemia cells. Taking murine leukaemia L1210 cells as a model, we have determined that: (i) PKC-alpha expression is more elevated in parental L1210 than in drug-resistant L1210/R cells, (ii) activation of PKC neutralizes iHDACs-mediated apoptosis in L1210/R cells, (iii) depletion of PKC in parental L1210 cells results in a positive response to iHDACs-mediated apoptosis, and (iv) transfection of a mutant constitutively active PKC-alpha form in L1210/R cells makes the cells refractory to apoptosis induction by iHDACs.

View Article and Find Full Text PDF

Ansamycins exert their effects by binding heat shock protein 90 (Hsp90) and targeting important signalling molecules for degradation via the proteasome pathway. We wanted to study the effect of geldanamycin (GA) and its derivative 17-allylamino-17-demethoxygeldanamycin (17-AAG) on glioblastoma cell lines. We show that these cells are growth inhibited by ansamycins by being arrested in G(2)/M and, subsequently, cells undergo apoptosis.

View Article and Find Full Text PDF

Resistance to chemotherapeutic drugs presents a big caveat for cancer treatment. In this review we will describe the molecular mechanisms involved in chemoresistance, discussing the mechanisms of resistance related to tumour microenvironment, as well as their intracellular mechanisms. Chemoresistance can also appear as a consequence to treatments with new anticancer drugs.

View Article and Find Full Text PDF

Rapamycin and its analogues are being tested as new antitumor agents. Rapamycin binds to FKBP-12 and this complex inhibits the activity of FRAP/mammalian target of rapamycin, which leads to dephosphorylation of 4EBP1 and p70 S6 kinase, resulting in blockade of translation initiation. We have found that RAP inhibits the growth of HER-2-overexpressing breast cancer cells.

View Article and Find Full Text PDF

The antitumor activity of the histone deacetylase inhibitors was tested in three well-characterized pancreatic adenocarcinoma cell lines, IMIM-PC-1, IMIM-PC-2, and RWP-1. These cell lines have been previously characterized in terms of their origin, the status of relevant molecular markers for this kind of tumor, resistance to other antineoplastic drugs, and expression of differentiation markers. In this study, we report that histone deacetylase inhibitors induce apoptosis in pancreatic cancer cell lines, independently of their intrinsic resistance to conventional antineoplastic agents.

View Article and Find Full Text PDF

Heparin-binding epidermal growth factor-like growth factor (HB-EGF) mRNA and protein expression is induced by EGF in MCF-10A nontransformed and Ha-ras transfected human mammary epithelial cells. The anti-EGF receptor (EGFR) blocking monoclonal antibody (MAb) 225 and the EGFR tyrosine kinase inhibitor PD153035 were able to inhibit the induction of HB-EGF mRNA levels in MCF-10A cells. However, the Ha-ras transformed MCF-10A cells were more refractory to inhibition by these agents and only a combination of the 225 MAb and PD153035 was able to significantly abrogate HB-EGF induction by EGF.

View Article and Find Full Text PDF

Activation of the ras oncogene is an important step in carcinogenesis. Human MCF-10A mammary epithelial cells were transformed with a point-mutated form of the Ha-ras oncogene. Epidermal growth factor receptor (EGFR) phosphorylation levels were chronically elevated after EGF induction and the EGFR ligand-driven internalization rate was slower in Ha-ras transformed MCF-10A cells.

View Article and Find Full Text PDF

Cripto-1 (CR-1), a member of the EGF-CFC peptide family, plays an essential role during mesoderm formation in vertebrates as well as in cancer development. Using cDNA gene expression array, Western blot, and indirect immunofluorescence, an increase in vimentin expression was demonstrated in CR-1-transfected human Caski cervical carcinoma cells compared to control vector-transfected cells. In parental Caski cells, recombinant CR-1 induced a dose-dependent increase of vimentin protein expression within 24 h.

View Article and Find Full Text PDF

Cripto-1 (CR-1) is an epidermal growth factor (EGF)-related protein. CR-1 can inhibit beta-casein and whey acidic protein expression in mouse mammary epithelial cells. The present study demonstrates that CR-1 can induce apoptosis in HC-11 mouse mammary epithelial cells, as measured by bis-benzimide stained nuclei, TUNEL assay and cell death ELISA.

View Article and Find Full Text PDF

EGF-related peptides and their receptors play an important, but not fully understood role, both, in epithelial physiology and pathophysiology but also in human tumor carcinogenesis and tumor behavior, respectively. Overexpression of EGF-related growth factors from normal epithelium to carcinomas has been demonstrated for several human tissues such as breast, endometrium, cervix and ovary. Additionally, the differential overexpression of EGFR or erb B-2 in various malignancies has already proven to be efficacious in stratifying patients with respect to a poor prognosis.

View Article and Find Full Text PDF

Cripto-1 (CR-1), a member of the epidermal growth factor-CFC peptide family, activates the ras/raf/mitogen-activated protein/extracellular signal-regulated kinase/mitogen-activated protein kinase pathway. In the present study, the role of CR-1 in the phosphatidylinositol 3'-kinase (PI3K)/AKT (protein kinase B)/glycogen synthase kinase 3beta (GSK-3beta)-dependent signaling pathway was evaluated in human SiHa cervical carcinoma cells. Our data demonstrate that CR-1 can enhance the tyrosine phosphorylation of the p85 regulatory subunit of PI3K and transiently induce the phosphorylation of AKT in a time- and dose-dependent manner.

View Article and Find Full Text PDF

Cripto-1 (CR-1) is a recently discovered protein of the epidermal growth factor family that fails to directly bind to any of the four known erb B type 1 receptor tyrosine kinases. The present study demonstrates that CR-1 indirectly induces tyrosine phosphorylation of erb B-4 but not of the epidermal growth factor-related receptors erb B-2 and erb B-3 in different mouse and human mammary epithelial cell lines. In addition, down-regulation of erb B-4 in NMuMG mouse mammary epithelial cells and in T47D human breast cancer cells, using an anti-erb B-4 blocking antibody or a hammerhead ribozyme vector targeted to erb B-4 mRNA, impairs the ability of CR-1 to fully activate mitogen-activated protein kinase.

View Article and Find Full Text PDF

Cripto-1 (CR-1) is a recently discovered protein of the epidermal growth factor family that does not directly activate any of the known erbB type 1 tyrosine kinase receptors. Also, CR-1 stimulates the growth of HC-11 mouse mammary epithelial cells. We found that prior treatment of HC-11 cells with exogenous CR-1 induced a competency response to the lactogenic hormones dexamethasone, insulin, and prolactin (DIP) with respect to the induction of the milk protein beta-casein.

View Article and Find Full Text PDF

Cripto-1 (CR-1), a recently discovered protein of the epidermal growth factor (EGF) family, was found to interact with a high affinity, saturable binding site(s) on HC-11 mouse mammary epithelial cells and on several different human breast cancer cell lines. This receptor exhibits specificity for CR-1, since other EGF-related peptides including EGF, transforming growth factor alpha, heparin-binding EGF-like growth factor, amphiregulin, epiregulin, betacellulin, or heregulin beta1 that bind to either the EGF receptor or to other type 1 receptor tyrosine kinases such as erb B-3 or erb B-4 fail to compete for binding. Conversely, CR-1 was found not to directly bind to or to activate the tyrosine kinases associated with the EGFR, erb B-2, erb B-3, or erb B-4 either alone or in various pairwise combinations which have been ectopically expressed in Ba/F3 mouse pro-B lymphocyte cells.

View Article and Find Full Text PDF

Amphiregulin (AR) can be induced at the mRNA level by 17-beta-estradiol (E2) or the phorbol ester tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA). This study compares the effects of TPA and E2 on the regulation of processing of AR isoforms and on subcellular localization in human MCF-7 breast cancer cells. AR was localized in the nucleus of MCF-7 cells after E2 treatment, whereas it was predominantly secreted after TPA treatment.

View Article and Find Full Text PDF

There has been increased interest in the last few years in seeking a better understanding of the local regulation of polypeptide growth factors by systemic hormones, such as sex steroids and by polypeptide hormones. Growth factors and systemic hormones play pivotal roles in hormone-regulated cancers such as breast cancer. In this review, we discuss the regulation of members of the epidermal growth factor (EGF) family by sex steroids and by regulators of the polypeptide hormone signal transduction enzyme termed protein kinase C (PKC).

View Article and Find Full Text PDF