Helicase-like transcription factor (HLTF) also known as SMARCA3, protects genome integrity. A tumor suppressor, HLTF is expressed in tumor cells but not in the tumor microenvironment (TME) in early-stage colorectal cancer (CRC). With disease progression, there is high concordance between epigenetic silencing of HLTF in CRC cells and negligible HLTF expression in the TME.
View Article and Find Full Text PDFEpigenetic mechanisms are integral to pancreatic β cell function. Promoter hypermethylation of the helicase like-transcription factor (HLTF) gene-a component of the cellular DNA damage response that contributes to genome stability-has been implicated in age-associated changes in β cells. To study HLTF, we generated global and β cell-specific (β) Hltf knockout (KO) immune competent (IC) and immune deficient (ID) Rag2-/IL2- mice.
View Article and Find Full Text PDFMethylation of the HLTF gene in colorectal cancer (CRC) cells occurs more frequently in men than women. Progressive epigenetic silencing of HLTF in tumor cells is accompanied by negligible expression in the tumor microenvironment (TME). Cell line-derived xenografts (CDX) were established in control (Hltf+/+) and Hltf-deleted male Rag2-/-IL2rg-/- mice by direct orthotopic cell microinjection (OCMI) of HLTF+/+HCT116 Red-FLuc cells into the submucosa of the cecum.
View Article and Find Full Text PDFThe existence of nuclear pore complexes in the nuclear envelope has led to the assumption that ions move freely from the cytosol into the nucleus, and that the molecular mechanisms at the plasma membrane that regulate cytosolic pH also regulate nuclear pH. Furthermore, studies to measure pH in the nucleus have produced contradictory results, since it has been found that the nuclear pH is either similar to the cytosol or more alkaline than the cytosol. However, most studies of nuclear pH have lacked the rigor needed to understand pH regulation in the nucleus.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
February 2020
Blood brain barrier (BBB), a barrier formed by endothelial cells, separates the brain from the circulatory system and protects the stability of central neural system normally, however, it also results in low permeability of vast majority of drugs for brain disease therapy. In this work, the cytotoxicity, uptake and transportation of 2D graphene nanosheet through BBB were investigated in in vitro models of BBB constructed by human brain microvascular endothelia cells (hBMECs). Permeability of two types of graphene nanosheet, including graphene oxide (GO) and porphyrin conjugated graphene oxide (PGO) through BBB were studied.
View Article and Find Full Text PDFBackground: Metastatic tumor cells have acidic extracellular pH and differential electrochemical H gradients generated across their cell membranes by V-type H-ATPases. This study shows that inhibition of the V-ATPases by the plant-derived monoterpene Myrtenal results in tumor cell death and decreased metastatic dissemination in mice.
Methods: The Myrtenal anticancer toxicity was evaluated in vitro using murine (B16F0 and B16F10) and human (SkMel-5) melanoma cell lines, and in in vivo mouse metastatic dissemination model.
Hltf is regulated by intron retention, and global Hltf-deletion causes perinatal lethality from hypoglycemia. In heart, full-length Hltf is a transcriptional regulator of Hif-1α that controls transport systems. Thus, we tested the hypothesis that Hltf deletion from placenta caused or exacerbated neonatal hypoglycemia via Hif-1α regulation of nutrient transporters.
View Article and Find Full Text PDFRecent successes in the development of new therapies for metastatic melanoma, such as mitogen-activated protein kinase pathway inhibitors, anticytotoxic T lymphocyte-associated antigen-4, and programmed cell death protein 1/programmed cell death ligand 1 (PD-L1) pathway-blocking antibodies, as well as combination strategies, all yielded promising results, changing the continually evolving landscape of therapeutic options for patients with melanoma. One promising new treatment modality is based on the use of immunomodulatory monoclonal antibodies that enhance the function of components of the antitumor immune response such as T cells or block immunologic checkpoints that restrain effective antitumor immunity. Program death-1 receptor and its ligand, PD-L1, is a major mechanism by which a tumor suppresses T cell-mediated antitumor immune responses.
View Article and Find Full Text PDFThe regulation of the luminal pH of each organelle is crucial for its function and must be controlled tightly. Nevertheless, it has been assumed that the nuclear pH is regulated by the cytoplasmic proton transporters via the diffusion of H across the nuclear pores because of their large diameter. However, it has been demonstrated that ion gradients exist between cytosol and nucleus, suggesting that the permeability of ions across the nuclear pores is restricted.
View Article and Find Full Text PDFBrain cancer is a fatal disease that is difficult to treat because of poor targeting and low permeability of chemotherapeutic drugs through the blood brain barrier. In a comparison to current treatments, such as surgery followed by chemotherapy and/or radiotherapy, photothermal therapy is a remarkable noninvasive therapy developed in recent years. In this work, porphyrin immobilized nanographene oxide (PNG) was synthesized and bioconjugated with a peptide to achieve enhanced and targeted photothermal therapy for brain cancer.
View Article and Find Full Text PDFIntimal macrophages are determinant cells for atherosclerotic lesion formation by releasing inflammatory factors and taking up oxidized low-density lipoprotein (oxLDL) via scavenger receptors, primarily the CD36 receptor. (-)-Epigallocatechin-3-gallate (EGCG) has a potential to decrease cholesterol accumulation and inflammatory responses in macrophages. We made EGCG-loaded nanoparticles (Enano) using phosphatidylcholine, kolliphor HS15, alpha-tocopherol acetate and EGCG.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
November 2015
Cytosolic Ca2+ ([Ca2+]cyt) is important in the regulation of several cellular functions involved in metastasis. We hypothesize that distinct [Ca2+]cyt regulation explains the acquisition of a more metastatic phenotype. To test this hypothesis, we used highly and lowly metastatic human melanoma cells and [Ca2+]cyt was monitored using Fura—2AM and fluorescence spectroscopy.
View Article and Find Full Text PDFCurrent approaches to the diagnosis and therapy of atherosclerosis cannot target lesion-determinant cells in the artery wall. Intimal macrophage infiltration promotes atherosclerotic lesion development by facilitating the accumulation of oxidized low-density lipoproteins (oxLDL) and increasing inflammatory responses. The presence of these cells is positively associated with lesion progression, severity and destabilization.
View Article and Find Full Text PDFRemoval of cholesterol from macrophage-derived foam cells is a critical step to the prevention of atherosclerotic lesions. We have recently demonstrated the functional importance of retinoids in the regulation of the steroidogenic acute regulatory (StAR) protein that predominantly mediates the intramitochondrial transport of cholesterol in target tissues. In the present study, treatment of mouse macrophages with retinoids, particularly all-trans retinoic acid (atRA) and 9-cis RA, resulted in increases in cholesterol efflux to apolipoprotein AI (Apo-A1).
View Article and Find Full Text PDFThe vacuolar (H(+))-ATPases (V-ATPases) are a family of ATP-driven proton pumps that couple ATP hydrolysis with translocation of protons across membranes. Previous studies have implicated V-ATPases in cancer cell invasion. It has been proposed that V-ATPases participate in invasion by localizing to the plasma membrane and causing acidification of the extracellular space.
View Article and Find Full Text PDFThe Vacuolar H+-ATPases (V-ATPases), a multi-subunits nanomotor present in all eukaryotic cells resides in the endomembranes of exocytotic and endocytotic pathways. Plasmalemmal V-ATPases have been shown to be involved in tumor cell metastasis. Pigment epithelium-derived factor (PEDF), a potent endogenous inhibitor of angiogenesis, is down-regulated in prostate cancer cells.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
March 2014
To metastasize distant organs, tumor cells and endothelial cells lining the blood vessels must crosstalk. The nature of this communication that allows metastatic cells to intravasate and travel through the circulation and to extravasate to colonize different organs is poorly understood. In this study, we evaluated one of the first steps in this process—the proximity and physical interaction of endothelial and metastatic cells.
View Article and Find Full Text PDFHLTF/Hltf regulates transcription, remodels chromatin, and coordinates DNA damage repair. Hltf is expressed in mouse brain and heart during embryonic and postnatal development. Silencing Hltf is semilethal.
View Article and Find Full Text PDFAlthough changes in both pH(in) and [Ca(2+)](i) have been observed in response to a variety of agonists, it is not clear whether these ionic events work independently or are coordinated to lead to a specific physiological response. One of the fundamental problems in studying these ionic events is that changes in pH(in) modify Ca(2+) regulatory mechanisms and changes in Ca(2+) may modify pH regulation. It is desirable to use a technique that allows concomitant monitoring of these two ions in cell populations with high time resolution.
View Article and Find Full Text PDFBackground: Despite recent advances, it is not clear to correlate the mechanical compliances and the metastatic potential of cancer cells. In this study, we investigated combined signatures of mechanical compliances, adhesions, and calcium dynamics correlated with the metastatic potential of cancer cells.
Scope Of Review: We used the lowly (LNCaP) and highly (CL-1, CL-2) metastatic human prostate cancer cells.
Up-regulated aerobic glycolysis is a hallmark of malignant cancers. Little is understood about the reasons why malignant tumors up-regulate glycolysis and acidify their microenvironment. Signaling pathways involved in glucose changes are numerous.
View Article and Find Full Text PDFIt has previously been shown that highly invasive MDA-MB231 human breast cancer cells express vacuolar proton-translocating ATPase (V-ATPases) at the cell surface, whereas the poorly invasive MCF7 cell line does not. Bafilomycin, a specific V-ATPase inhibitor, reduces the in vitro invasion of MB231 cells but not MCF7 cells. Targeting of V-ATPases to different cellular membranes is controlled by isoforms of subunit a.
View Article and Find Full Text PDFJ Bioenerg Biomembr
December 2007
Angiogenesis, i.e., new blood vessel formation, is required in normal and pathological states.
View Article and Find Full Text PDFThe opportunistic pathogen Pseudomonas aeruginosa utilizes a cell density-dependent signalling phenomenon known as quorum sensing (QS) to regulate several virulence factors needed for infection. Acylated homoserine lactones, or autoinducers, are the primary signal molecules that mediate QS in P. aeruginosa.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
September 2006
Microvascular endothelial cells involved in angiogenesis are exposed to an acidic environment that is not conducive for growth and survival. These cells must exhibit a dynamic intracellular (cytosolic) pH (pHcyt) regulatory mechanism to cope with acidosis, in addition to the ubiquitous Na+/H+ exchanger and HCO3--based H+-transporting systems. We hypothesize that the presence of plasmalemmal vacuolar-type proton ATPases (pmV-ATPases) allows microvascular endothelial cells to better cope with this acidic environment and that pmV-ATPases are required for cell migration.
View Article and Find Full Text PDF