Publications by authors named "Martinez-Ferrandis J"

Refractory or relapsed diffuse large B-cell lymphoma (DLBCL) often associates with the activated B-cell-like (ABC) subtype and genetic alterations that drive constitutive NF-κB activation and impair B-cell terminal differentiation. Here, we show that DNA damage response by p53 is a central mechanism suppressing the pathogenic cooperation of IKK2ca-enforced canonical NF-κB and impaired differentiation resulting from Blimp1 loss in ABC-DLBCL lymphomagenesis. We provide evidences that the interplay between these genetic alterations and the tumor microenvironment select for additional molecular addictions that promote lymphoma progression, including aberrant coexpression of FOXP1 and the B-cell mutagenic enzyme activation-induced deaminase, and immune evasion through major histocompatibility complex class II downregulation, PD-L1 upregulation, and T-cell exhaustion.

View Article and Find Full Text PDF

We have previously reported that LITAF is silenced by promoter hypermethylation in germinal centre-derived B-cell lymphomas, but beyond these data the regulation and function of lipopolysaccharide-induced tumour necrosis factor (TNF) factor (LITAF) in B cells are unknown. Gene expression and immunohistochemical studies revealed that LITAF and BCL6 show opposite expression in tonsil B-cell subpopulations and B-cell lymphomas, suggesting that BCL6 may regulate LITAF expression. Accordingly, BCL6 silencing increased LITAF expression, and chromatin immunoprecipitation and luciferase reporter assays demonstrated a direct transcriptional repression of LITAF by BCL6.

View Article and Find Full Text PDF

B-cell maturation and germinal center (GC) formation are dependent on the interplay between BCL6 and other transcriptional regulators. FOXP1 is a transcription factor that regulates early B-cell development, but whether it plays a role in mature B cells is unknown. Analysis of human tonsillar B-cell subpopulations revealed that FOXP1 shows the opposite expression pattern to BCL6, suggesting that FOXP1 regulates the transition from resting follicular B cell to activated GC B cell.

View Article and Find Full Text PDF

Chromosomal translocations involving the MALT1 gene are hallmarks of mucosa-associated lymphoid tissue (MALT) lymphoma. To date, targeting these translocations to mouse B cells has failed to reproduce human disease. Here, we induced MALT1 expression in mouse Sca1(+)Lin(-) hematopoietic stem/progenitor cells, which showed NF-κB activation and early lymphoid priming, being selectively skewed toward B-cell differentiation.

View Article and Find Full Text PDF

Human GTPBP3 is an evolutionarily conserved, multidomain protein involved in mitochondrial tRNA modification. Characterization of its biochemical properties and the phenotype conferred by GTPBP3 inactivation is crucial to understanding the role of this protein in tRNA maturation and its effects on mitochondrial respiration. We show that the two most abundant GTPBP3 isoforms exhibit moderate affinity for guanine nucleotides like their bacterial homologue, MnmE, although they hydrolyze GTP at a 100-fold lower rate.

View Article and Find Full Text PDF

TRAIL is a potent inducer of apoptosis in malignant but not in normal cells. TRAIL binds to the proapoptotic death receptor DR4 and DR5 as well as to the decoy receptors DcR1 and DcR2. To evaluate the involvement of TRAIL receptor genes in breast cancer, we carried out a case-control study of eight selected polymorphisms in a large sample of Spanish women.

View Article and Find Full Text PDF

Background: RNA interference has emerged as a new and potent tool to knockdown the expression of target genes and to investigate their functions. For short time experiments with mammalian cell lines, RNA interference is typically induced by transfecting small interfering RNAs (siRNAs). Primary cells constitute important experimental systems in many studies because of their similarity to their in vivo counterparts; however, transfection of these cells has been found to be difficult.

View Article and Find Full Text PDF

In Spain, the contribution of BRCA mutations to the population incidence of early-onset breast cancer was unknown. We carried out a mutational analysis of the BRCA1 and BRCA2 genes in 124 Spanish women diagnosed with breast cancer before the age 41 and who were not selected for a family history of this disease. The genetic study was performed by PCR-SSCP analysis and DNA sequencing.

View Article and Find Full Text PDF

We screened index cases from 410 Spanish breast/ovarian cancer families and 214 patients (19 of them males) with breast cancer for germ-line mutations in the BRCA1 and BRCA2 genes, using SSCP, PTT, CSGE, DGGE, and direct sequencing. We identified 60 mutations in BRCA1 and 53 in BRCA2. Of the 53 distinct mutations observed, 11 are novel and 12 have been reported only in Spanish families (41.

View Article and Find Full Text PDF

A frame-shift 9254del5 mutation was independently identified in 12 families, eleven of them with Spanish ancestors, in a BRCA2 screening performed in 841 breast and/or ovarian cancer families and in 339 women with breast cancer diagnosed before the age of 40 at different centers in France and Spain. We sought to analyze in detail the haplotype and founder effects of the 9254del5 and to estimate the time of origin of the mutation. Eight polymorphic microsatellite markers and two BRCA2 polymorphisms were used for the haplotype analyses.

View Article and Find Full Text PDF

Mutations underlying FH in Spain are largely unknown because only a few and limited surveys have been carried out on Spanish FH patients up to now. To gain information on this issue, we have analysed a group of 113 unrelated Spanish FH patients from an eastern area of Spain (Valencian Community). We have screened the LDLR gene by Southern blot and PCR-SSCP analysis to detect large rearrangements and small mutations, respectively.

View Article and Find Full Text PDF