Publications by authors named "Martinez-Avila O"

Bacterial exopolysaccharides (EPS) are extracellular polymer-based substances recently defined as potential plant biostimulants, as they can increase nutrient uptake, water retention, and resistance to abiotic stress. As sugar-based substances, the bacteria producing them need to grow in a sugar-rich substrate. Hence, some agri-food by-products could be used as suitable carbon sources for EPS production as a cost-effective and more sustainable alternative to conventional substrates.

View Article and Find Full Text PDF

Polyhydroxyalkanoates (PHAs) are polyesters of significant interest due to their biodegradability and properties similar to petroleum-derived plastics, as well as the fact that they can be produced from renewable sources such as by-product streams. In this study, brewer's spent grain (BSG), the main by-product of the brewing industry, was subjected to a set of physicochemical pretreatments and their effect on the release of reducing sugars (RS) was evaluated. The RS obtained were used as a substrate for further PHA production in Burkholderia cepacia, Bacillus cereus, and Cupriavidus necator in liquid cultures.

View Article and Find Full Text PDF

2-phenylethanol (2-PE) is a value-added compound widely used in industry due to its rose-like odor and antibacterial properties that can be bioproduced using wastes as raw materials. This study presents the valorization of nine agro-industrial wastes as potential substrates for 2-PE production using an isolated 2-PE producer Pichia kudriavzevii, and the solid-state fermentation (SSF) technology as an alternative approach. The assessed substrates comprised wastes of varied traits such that each of them provided different characteristics to the fermentation.

View Article and Find Full Text PDF

This study describes the use of alternative operational strategies in the solid-state fermentation of the agro-industrial leftover sugar cane bagasse (SCB) supplemented with l-phenylalanine, for bioproducing natural 2-phenylethanol (2-PE) and 2-phenethyl acetate (2-PEA) using K. marxianus. Here, fed-batch and sequential-batch have been assessed at two scales (1.

View Article and Find Full Text PDF

2-Phenylethanol (2-PE) and 2-phenethyl acetate (2-PEA) are valuable generally recognized as safe flavoring agents widely used in industry. Perfumes, pharmaceuticals, polishes, and personal care products, are some of the final products using these compounds as additives due to their rose-like odor. Also, 2-PE is used in disinfectants, pest control, and cleaning products due to its biocide capability.

View Article and Find Full Text PDF

The recent discovery of conditions that induce nanoribbon structures of amelogenin protein in vitro raises questions about their role in enamel formation. Nanoribbons of recombinant human full-length amelogenin (rH174) are about 17 nm wide and self-align into parallel bundles; thus, they could act as templates for crystallization of nanofibrous apatite comprising dental enamel. Here we analyzed the secondary structures of nanoribbon amelogenin by x-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) and tested if the structural motif matches previous data on the organic matrix of enamel.

View Article and Find Full Text PDF

Background: Enamel synthesis is a highly dynamic process characterized by simultaneity of matrix secretion, assembly and processing during apatite mineralization. MMP-20 is the first protease to hydrolyze amelogenin, resulting in specific cleavage products that self-assemble into nanostructures at specific mineral compositions and pH. In this investigation, enzyme kinetics of MMP-20 proteolysis of recombinant full-length human amelogenin (rH174) under different mineral compositions is elucidated.

View Article and Find Full Text PDF

Enamel matrix self-assembly has long been suggested as the driving force behind aligned nanofibrous hydroxyapatite formation. We tested if amelogenin, the main enamel matrix protein, can self-assemble into ribbon-like structures in physiologic solutions. Ribbons 17 nm wide were observed to grow several micrometers in length, requiring calcium, phosphate, and pH 4.

View Article and Find Full Text PDF

Dendritic cells are the most potent of the professional antigen-presenting cells which display a pivotal role in the generation and regulation of adaptive immune responses against HIV-1. The migratory nature of dendritic cells is subverted by HIV-1 to gain access to lymph nodes where viral replication occurs. Dendritic cells express several calcium-dependent C-type lectin receptors including dendritic cell-specific ICAM-3 grabbing non-integrin (DC-SIGN), which constitute a major receptor for HIV-1.

View Article and Find Full Text PDF

Self-assembly of amelogenin plays a key role in controlling enamel biomineralization. Recently, we generated self-aligning nanoribbons of amelogenin in water-in-oil emulsions stabilized by the full-length protein (rH174). Here, we tested the hypothesis that the hydrophilic C-terminus is critical for self-assembly of amelogenin into nanoribbons.

View Article and Find Full Text PDF

After three decades of research, an effective vaccine against the pandemic AIDS caused by human immunodeficiency virus (HIV) is not still available, and a deeper understanding of HIV immunology, as well as new chemical tools that may contribute to improve the currently available arsenal against the virus, is highly wanted. Among the few broadly neutralizing human immunodeficiency virus type 1 (HIV-1) monoclonal antibodies, 2G12 is the only carbohydrate-directed one. 2G12 recognizes a cluster of high-mannose glycans on the viral envelope glycoprotein gp120.

View Article and Find Full Text PDF

The highly organized microstructure of dental enamel is a result of protein-guided anisotropic growth of apatite nanofibers. It is established that amelogenin proteins, the main constituent of the developing enamel matrix, form nanospheres in vitro, but the amphiphilic nature of the full-length protein conveys the possibility of generating more complex structures as observed with other surfactant-like molecules. This study tested if the use of metastable oil-water emulsions can induce supramolecular assemblies of amelogenin.

View Article and Find Full Text PDF

Gold nanoparticles coated with multiple copies of an amphiphilic sulfate-ended ligand are able to bind the HIV envelope glycoprotein gp120 as measured by surface plasmon resonance (SPR) and inhibit in vitro the HIV infection of T-cells at nanomolar concentrations. A 50% density of sulfated ligands on approximately 2 nm nanoparticles (the other ligands being inert glucose derivatives) is enough to achieve high anti-HIV activities. This result opens up the possibility of tailoring both sulfated ligands and other anti-HIV molecules on the same gold cluster, thus contributing to the development of non-cocktail based multifunctional anti-HIV systems.

View Article and Find Full Text PDF

The HIV envelope glycoprotein gp120 takes advantage of the high-mannose clusters on its surface to target the C-type lectin dendritic cell-specific intracellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) on dendritic cells. Mimicking the cluster presentation of oligomannosides on the virus surface is a strategy for designing carbohydrate-based antiviral agents. Bio-inspired by the cluster presentation of gp120, we have designed and prepared a small library of multivalent water-soluble gold glyconanoparticles (manno-GNPs) presenting truncated (oligo)mannosides of the high-mannose undecasaccharide Man(9)GlcNAc(2) and have tested them as inhibitors of DC-SIGN binding to gp120.

View Article and Find Full Text PDF