There is an increasing need for new biomarkers improving prediction of chronic kidney disease (CKD) in individuals with type 2 diabetes (T2D). We aimed to identify blood-based epigenetic biomarkers associated with incident CKD and develop a methylation risk score (MRS) predicting CKD in newlydiagnosed individuals with T2D. DNA methylation was analysed epigenome-wide in blood from 487 newly-diagnosed individuals with T2D, of whom 88 developed CKD during 11.
View Article and Find Full Text PDFObjectives: Cardiometabolic diseases are a global health concern, affecting socioeconomically disadvantaged groups more adversely. Effective public health interventions targeting preventable risk factors like physical inactivity and unhealthy diets are needed. Codesign with citizens presents a promising opportunity for developing context-relevant and population-relevant interventions, with high chances of adoption by the target population.
View Article and Find Full Text PDFAllosteric regulators acting as pharmacological chaperones hold promise for innovative therapeutics since they target noncatalytic sites and stabilize the folded protein without competing with the natural substrate, resulting in a net gain of function. Exogenous allosteric regulators are typically more selective than active site inhibitors and can be more potent than competitive inhibitors when the natural substrate levels are high. To identify novel structure-targeted allosteric regulators (STARs) that bind to and stabilize the mitochondrial enzyme glutaryl-CoA dehydrogenase (GCDH), the computational site-directed enzyme enhancement therapy (SEE-Tx) technology was applied.
View Article and Find Full Text PDFMutations in mitochondrial energy-producing genes lead to a heterogeneous group of untreatable disorders known as primary mitochondrial diseases (MD). Leigh syndrome (LS) is the most common pediatric MD and is characterized by progressive neuromuscular affectation and premature death. Here, we show that daily cannabidiol (CBD) administration significantly extends lifespan and ameliorates pathology in two LS mouse models, and improves cellular function in fibroblasts from LS patients.
View Article and Find Full Text PDFCerebral adrenoleukodystrophy (CALD) is an X-linked rapidly progressive demyelinating disease leading to death usually within a few years. The standard of care is haematopoietic stem cell transplantation (HSCT), but many men are not eligible due to age, absence of a matched donor or lesions of the corticospinal tracts (CST). Based on the ADVANCE study showing that leriglitazone decreases the occurrence of CALD, we treated 13 adult CALD patients (19-67 years of age) either not eligible for HSCT (n = 8) or awaiting HSCT (n = 5).
View Article and Find Full Text PDFLeriglitazone is a unique peroxisome proliferator-activated receptor-gamma (PPARγ) agonist that crosses the blood-brain barrier in humans and clinical trials have shown evidence of efficacy in neurodegenerative diseases. At clinical doses which are well-tolerated, leriglitazone reaches the target central nervous system (CNS) concentrations that are needed for PPARγ engagement and efficacy; PPARγ engagement is also supported by clinical and anti-inflammatory biomarker changes in the Cerebrospinal fluid in the CNS. Plasma pharmacokinetics (PK) of leriglitazone were determined in a phase 1 study in male healthy volunteers comprising a single ascending dose (SAD) and a multiple ascending dose (MAD) at oral doses of 30, 90, and 270 mg and 135 and 270 mg, respectively.
View Article and Find Full Text PDFBackground: Rett syndrome is a neuropediatric disease occurring due to mutations in MECP2 and characterized by a regression in the neuronal development following a normal postnatal growth, which results in the loss of acquired capabilities such as speech or purposeful usage of hands. While altered neurotransmission and brain development are the center of its pathophysiology, alterations in mitochondrial performance have been previously outlined, shaping it as an attractive target for the disease treatment.
Methods: We have thoroughly described mitochondrial performance in two Rett models, patients' primary fibroblasts and female Mecp2 mice brain, discriminating between different brain areas.
Purpose: This study aims to determine initiation and persistence for patients with type 2 diabetes receiving their first prescription of an antidiabetic agent and the associations with socioeconomic factors.
Methods: A cohort study including 8515 patients with type 2 diabetes who were prescribed their first antidiabetic medication between 2012 and 2019 in Uppsala, Sweden, was followed during 2 years. Medical records were linked to national registers on dispensed drugs and socioeconomic data.
Aims: Despite metformin being used as first-line pharmacological therapy for type 2 diabetes, its underlying mechanisms remain unclear. We aimed to determine whether metformin altered DNA methylation in newly-diagnosed individuals with type 2 diabetes.
Methods And Results: We found that metformin therapy is associated with altered methylation of 26 sites in blood from Scandinavian discovery and replication cohorts (FDR < 0.
Increasing evidence suggests that the peroxisome proliferator-activated receptor γ (PPARγ), a member of the nuclear receptor superfamily, plays an important role in physiological processes in the central nervous system (CNS) and is involved in cellular metabolism and repair. Cellular damage caused by acute brain injury and long-term neurodegenerative disorders is associated with alterations of these metabolic processes leading to mitochondrial dysfunction, oxidative stress, and neuroinflammation. PPARγ agonists have demonstrated the potential to be effective treatments for CNS diseases in preclinical models, but to date, most drugs have failed to show efficacy in clinical trials of neurodegenerative diseases including amyotrophic lateral sclerosis, Parkinson's disease, and Alzheimer's disease.
View Article and Find Full Text PDFBackground: Adult patients with adrenoleukodystrophy have a poor prognosis owing to development of adrenomyeloneuropathy. Additionally, a large proportion of patients with adrenomyeloneuropathy develop life-threatening progressive cerebral adrenoleukodystrophy. Leriglitazone is a novel selective peroxisome proliferator-activated receptor gamma agonist that regulates expression of key genes that contribute to neuroinflammatory and neurodegenerative processes implicated in adrenoleukodystrophy disease progression.
View Article and Find Full Text PDFThe novel brain-penetrant peroxisome proliferator-activated receptor gamma agonist leriglitazone, previously validated for other rare neurodegenerative diseases, is a small molecule that acts as a regulator of mitochondrial function and exerts neuroprotective, anti-oxidative and anti-inflammatory effects. Herein, we tested whether leriglitazone can be effective in ameliorating the mitochondrial defects that characterize an hiPS-derived model of Pantothenate kinase-2 associated Neurodegeneration (PKAN). PKAN is caused by a genetic alteration in the mitochondrial enzyme pantothenate kinase-2, whose function is to catalyze the first reaction of the CoA biosynthetic pathway, and for which no effective cure is available.
View Article and Find Full Text PDFBackground And Objectives: Friedreich ataxia (FRDA) is an autosomal recessive ataxia with no approved treatments. Leriglitazone is a selective peroxisome proliferator-activated receptor γ agonist that crosses the blood-brain barrier and, in preclinical models, improved mitochondrial function and energy production. We assessed effects of leriglitazone in patients with FRDA in a proof-of-concept study.
View Article and Find Full Text PDFPrevious spatio-temporal COVID-19 prediction models have focused on the prediction of subsequent number of cases, and have shown varying accuracy and lack of high geographical resolution. We aimed to predict trends in COVID-19 test positivity, an important marker for planning local testing capacity and accessibility. We included a full year of information (June 29, 2020-July 4, 2021) with both direct and indirect indicators of transmission, e.
View Article and Find Full Text PDFObjective: Type 2 diabetes (T2D) was recently reclassified into severe insulin-deficient diabetes (SIDD), severe insulin-resistant diabetes (SIRD), mild obesity-related diabetes (MOD), and mild age-related diabetes (MARD), which have different risk of complications. We explored whether DNA methylation differs between these subgroups and whether subgroup-unique methylation risk scores (MRSs) predict diabetic complications.
Research Design And Methods: Genome-wide DNA methylation was analyzed in blood from subjects with newly diagnosed T2D in discovery and replication cohorts.
The app-based COVID Symptom Study was launched in Sweden in April 2020 to contribute to real-time COVID-19 surveillance. We enrolled 143,531 study participants (≥18 years) who contributed 10.6 million daily symptom reports between April 29, 2020 and February 10, 2021.
View Article and Find Full Text PDFIntroduction: The prevalence and costs of type 2 diabetes are increasing worldwide. A cornerstone in the treatment and care of diabetes is supporting each patient in self-management. In Sweden, most patients with type 2 diabetes are cared for in the primary care setting, which is heavily burdened.
View Article and Find Full Text PDFWe describe a flight-associated infection scenario of seven individuals with a B.1.617.
View Article and Find Full Text PDFX-linked adrenoleukodystrophy (X-ALD), a potentially fatal neurometabolic disorder with no effective pharmacological treatment, is characterized by clinical manifestations ranging from progressive spinal cord axonopathy [adrenomyeloneuropathy (AMN)] to severe demyelination and neuroinflammation (cerebral ALD-cALD), for which molecular mechanisms are not well known. Leriglitazone is a recently developed brain penetrant full PPARγ agonist that could modulate multiple biological pathways relevant for neuroinflammatory and neurodegenerative diseases, and particularly for X-ALD. We found that leriglitazone decreased oxidative stress, increased adenosine 5'-triphosphate concentration, and exerted neuroprotective effects in primary rodent neurons and astrocytes after very long chain fatty acid-induced toxicity simulating X-ALD.
View Article and Find Full Text PDFStatins lower cholesterol and reduce the risk of cardiovascular disease. However, the exact mechanisms of statins remain unknown. We investigated whether statin therapy associates with epigenetics in Type 2 diabetes (T2D) patients.
View Article and Find Full Text PDFFriedreich ataxia (FRDA), the most common autosomal recessive ataxia, is characterized by degeneration of the large sensory neurons and spinocerebellar tracts, cardiomyopathy, and increased incidence in diabetes. The underlying pathophysiological mechanism of FRDA, driven by a significantly decreased expression of frataxin (FXN), involves increased oxidative stress, reduced activity of enzymes containing iron‑sulfur clusters (ISC), defective energy production, calcium dyshomeostasis, and impaired mitochondrial biogenesis, leading to mitochondrial dysfunction. The peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-activated transcriptional factor playing a key role in mitochondrial function and biogenesis, fatty acid storage, energy metabolism, and antioxidant defence.
View Article and Find Full Text PDFMetformin is the first-line pharmacotherapy for managing type 2 diabetes (T2D). However, many patients with T2D do not respond to or tolerate metformin well. Currently, there are no phenotypes that successfully predict glycemic response to, or tolerance of, metformin.
View Article and Find Full Text PDFPurpose: Physical activity (PA) has been linked to a reduced risk of type 2 diabetes by reducing weight and improving insulin sensitivity. We investigated whether PA is associated with a lower incidence of latent autoimmune diabetes in adults (LADA) and whether the association is modified by genotypes of human leukocyte antigen (HLA), transcription factor 7-like 2 (TCF7L2)-rs7903146, or the fat mass and obesity-associated gene, FTO-rs9939609.
Methods: We combined data from a Swedish case-control study and a Norwegian prospective study including 621 incident cases of LADA and 3596 cases of type 2 diabetes.
Transcription disequilibria are characteristic of many neurodegenerative diseases. The activity-evoked transcription of immediate early genes (IEGs), important for neuronal plasticity, memory and behavior, is altered in CNS diseases and governed by epigenetic modulation. KDM1A, a histone 3 lysine 4 demethylase that forms part of transcription regulation complexes, has been implicated in the control of IEG transcription.
View Article and Find Full Text PDF