Publications by authors named "Martine van Belzen"

Genomewide association studies (GWASs) have contributed greatly to unraveling the genetic basis of Alzheimer's disease (AD). However, a large amount of "missing heritability" remains. In this exploratory study, we investigated the effect of cytosine-adenine-guanine (CAG) repeats in polyglutamine disease-associated genes (PDAGs) on the risk of AD and its expression.

View Article and Find Full Text PDF

The SETD2-related overgrowth syndrome is also called "Luscan-Lumish syndrome" (OMIM 616831) with the clinical characteristics of intellectual disability, speech delay, macrocephaly, facial dysmorphism, and autism spectrum disorders. We report on two novel patients a 4.5-year-old boy and a 23-year-old female adolescent with a speech and language developmental delay, autism spectrum disorder and macrocephaly, who were both diagnosed with SETD2-related overgrowth syndrome due to de novo frameshift mutations in the SETD2 gene.

View Article and Find Full Text PDF

Rubinstein-Taybi syndrome (RSTS) is a multiple congenital anomalies syndrome associated with mutations in CREBBP (70%) and EP300 (5-10%). Previous reports have suggested an increased incidence of specific benign and possibly also malignant tumors. We identified all known individuals diagnosed with RSTS in the Netherlands until 2015 (n = 87) and studied the incidence and character of neoplastic tumors in relation to their CREBBP/EP300 alterations.

View Article and Find Full Text PDF

In many children with cancer and characteristics suggestive of a genetic predisposition syndrome, the genetic cause is still unknown. We studied the yield of pathogenic mutations by applying whole-exome sequencing on a selected cohort of children with cancer. To identify mutations in known and novel cancer-predisposing genes, we performed trio-based whole-exome sequencing on germline DNA of 40 selected children and their parents.

View Article and Find Full Text PDF

Huntington disease (HD) is a severe neuropsychiatric disorder caused by a cytosine-adenine-guanine (CAG) repeat expansion in the HTT gene. Although HD is frequently complicated by depression, it is still unknown to what extent common HTT CAG repeat size variations in the normal range could affect depression risk in the general population. Using binary logistic regression, we assessed the association between HTT CAG repeat size and depression risk in two well-characterized Dutch cohorts─the Netherlands Study of Depression and Anxiety and the Netherlands Study of Depression in Older Persons─including 2165 depressed and 1058 non-depressed persons.

View Article and Find Full Text PDF

A consistent feature of predictive testing guidelines for Huntington's disease (HD) is the recommendation not to undertake predictive tests on those < 18 years. Exceptions are made but the extent of, and reasons for, deviation from the guidelines are unknown. The UK Huntington's Prediction Consortium has collected data annually on predictive tests undertaken from the 23 UK genetic centers.

View Article and Find Full Text PDF

Objective: To determine the frequency of distinctive EGFr cysteine altering mutations in the 60,706 exomes of the exome aggregation consortium (ExAC) database.

Methods: ExAC was queried for mutations distinctive for cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), namely mutations leading to a cysteine amino acid change in one of the 34 EGFr domains of NOTCH3. The genotype-phenotype correlation predicted by the ExAC data was tested in an independent cohort of Dutch CADASIL patients using quantified MRI lesions.

View Article and Find Full Text PDF

Rubinstein-Taybi syndrome (RSTS) is a developmental disorder characterized by a typical face and distal limbs abnormalities, intellectual disability, and a vast number of other features. Two genes are known to cause RSTS, CREBBP in 60% and EP300 in 8-10% of clinically diagnosed cases. Both paralogs act in chromatin remodeling and encode for transcriptional co-activators interacting with >400 proteins.

View Article and Find Full Text PDF

Mutations in CREBBP cause Rubinstein-Taybi syndrome. By using exome sequencing, and by using Sanger in one patient, CREBBP mutations were detected in 11 patients who did not, or only in a very limited manner, resemble Rubinstein-Taybi syndrome. The combined facial signs typical for Rubinstein-Taybi syndrome were absent, none had broad thumbs, and three had only somewhat broad halluces.

View Article and Find Full Text PDF

[This corrects the article DOI: 10.1002/mgg3.177.

View Article and Find Full Text PDF

Whole-exome sequencing of a patient with intellectual disability and without recognisable phenotype yielded a mutation in the intron20 splice donor site of CREBBP. Mutations at different positions within the same intron20 splice donor site were observed in three patients clinically suspected as having Rubinstein-Taybi syndrome (RSTS). All mutations were de novo and likely disease-causing.

View Article and Find Full Text PDF

Rubinstein-Taybi syndrome (RTS, OMIM 180849) and Filippi syndrome (FLPIS, OMIM 272440) are both rare syndromes, with multiple congenital anomalies and intellectual deficit (MCA/ID). We present a patient with intellectual deficit, short stature, bilateral syndactyly of hands and feet, broad thumbs, ocular abnormalities, and dysmorphic facial features. These clinical features suggest both RTS and FLPIS.

View Article and Find Full Text PDF

Rubinstein-Taybi syndrome (RTS) is a rare autosomal dominant congenital disorder characterized by distinctive facial features, broad thumbs and halluces, growth retardation, and a variable degree of cognitive impairment. CREBBP is the major causative gene and mutations in EP300 are the cause of RTS in a minority of patients. In this study, 17 patients with a clinical diagnosis of RTS were investigated with direct sequencing, MLPA, and array-CGH in search for mutations in these two genes.

View Article and Find Full Text PDF

Background And Objective: Huntington's disease (HD) is a neurodegenerative disease associated with a CAG repeat expansion in the Huntingtin (HTT) gene. A trinucleotide size between 27 and 35 is considered 'intermediate' and not to cause symptoms and signs of HD. There are articles claiming otherwise, however publishing only the cases that have a HD phenotype introduces a significant publication bias.

View Article and Find Full Text PDF

Background: Huntington disease (HD) is an autosomal dominant neurodegenerative disorder, characterized by motor, psychiatric and cognitive symptoms. HD is caused by a CAG repeat expansion in the first exon of the HTT gene, resulting in an expanded polyglutamine tract at the N-terminus of the huntingtin protein. Typical disease onset is around mid-life (adult-onset HD) whereas onset below 21 years is classified as juvenile HD.

View Article and Find Full Text PDF

Objective: With a shift towards noninvasive testing, we have explored and validated the use of noninvasive prenatal diagnosis (NIPD) for Huntington disease (HD).

Methods: Fifteen couples have been included, assessing a total of n = 20 pregnancies. Fetal paternally inherited CAG repeat length was determined in total cell-free DNA from maternal plasma using a direct approach by PCR and subsequent fragment analysis.

View Article and Find Full Text PDF

New mutations for Huntington disease (HD) originate from CAG repeat expansion of intermediate alleles (27-35 CAG). Expansions of such alleles into the pathological range (≥ 36 CAG) have been exclusively observed in paternal transmission. We report the occurrence of a new mutation that defies the paternal expansion bias normally observed in HD.

View Article and Find Full Text PDF

De novo monoallelic variants in NFIX cause two distinct syndromes. Whole gene deletions, nonsense variants and missense variants affecting the DNA-binding domain have been seen in association with a Sotos-like phenotype that we propose is referred to as Malan syndrome. Frameshift and splice-site variants thought to avoid nonsense-mediated RNA decay have been seen in Marshall-Smith syndrome.

View Article and Find Full Text PDF

De novo germline variants in several components of the SWI/SNF-like BAF complex can cause Coffin-Siris syndrome (CSS), Nicolaides-Baraitser syndrome (NCBRS), and nonsyndromic intellectual disability. We screened 63 patients with a clinical diagnosis of CSS for these genes (ARID1A, ARID1B, SMARCA2, SMARCA4, SMARCB1, and SMARCE1) and identified pathogenic variants in 45 (71%) patients. We found a high proportion of variants in ARID1B (68%).

View Article and Find Full Text PDF

Huntington disease (HD) is caused by the expansion of an unstable polymorphic trinucleotide (CAG)n repeat in exon 1 of the HTT gene, which translates into an extended polyglutamine tract in the protein. Laboratory diagnosis of HD involves estimation of the number of CAG repeats. Molecular genetic testing for HD is offered in a wide range of laboratories both within and outside the European community.

View Article and Find Full Text PDF

Background: Huntington's disease (HD) is a progressive autosomal dominant neurodegenerative disorder caused by a CAG repeat expansion in the HD gene (HTT). The CAG domain of mutant HTT is unstable upon intergenerational transmission, however, little is known about the underlying mechanisms.

Methods: From the HD archives of the Leiden University Medical Centre DNA samples from all parent-offspring pairs involving 36 CAG repeats or more were selected.

View Article and Find Full Text PDF