Publications by authors named "Martine Rouvet"

We have investigated a new class of food-grade particles, whey protein microgels, as stabilisers of triglyceride-water emulsions. The sub-micron particles stabilized oil-in-water emulsions at all pH with and without salt. All emulsions creamed but exhibited exceptional resistance to coalescence.

View Article and Find Full Text PDF

The importance of surfactant self-assemblies in foam stabilization is well-known. The aim of the current study was to investigate the self-assemblies of the nonionic surfactant polyglycerol ester (PGE) in bulk solutions, at the interface and within foams, using a combined approach of small-angle neutron scattering, neutron reflectivity, and electron microscopy. PGE bulk solutions contain vesicles as well as open lamellar structures.

View Article and Find Full Text PDF

We have chemically synthesized two water-soluble forms of tocopherol succinate linked via an ester bond to hexaethylene glycol and dodecaethylene glycol. The self-assembly structure of the former in water is vesicular, whereas the latter forms elongated micelles. We treated Caco-2 cells with these compounds in these physical forms, in addition to a mixed micelle form.

View Article and Find Full Text PDF

Aqueous dispersions of demineralized beta-lactoglobulin (beta-lg) were held at 85 degrees C for 15 min at a constant protein concentration of 1 wt % in the pH range of 3.0-7.0.

View Article and Find Full Text PDF

Three complementary techniques were used in this study to investigate the physical changes during wetting of roasted and ground coffee. Scanning electron microscopy (SEM) was found to provide indirect evidence of the presence of liquid water in the coffee particles. The effect of wetting on coffee closed porosity was studied by helium pycnometry, and finally, particle sizing was used to determine the swelling kinetics of coffee after wetting.

View Article and Find Full Text PDF

Whey protein isolate was heat-treated at 85 degrees C for 15 min at pH ranging from 6.0 to 7.0 in the presence of NaCl in order to generate the highest possible amount of soluble aggregates before insolubility occurred.

View Article and Find Full Text PDF

The aim of this work was to identify Lactobacillus johnsonii NCC533 (La1) surface molecules mediating attachment to intestinal epithelial cells and mucins. Incubation of Caco-2 intestinal epithelial cells with an L. johnsonii La1 cell wall extract led to the recognition of elongation factor Tu (EF-Tu) as a novel La1 adhesin-like factor.

View Article and Find Full Text PDF

Lactobacillus johnsonii NCC 533 is a member of the acidophilus group of intestinal lactobacilli that has been extensively studied for their "probiotic" activities that include, pathogen inhibition, epithelial cell attachment, and immunomodulation. To gain insight into its physiology and identify genes potentially involved in interactions with the host, we sequenced and analyzed the 1.99-Mb genome of L.

View Article and Find Full Text PDF

Aggregation-promoting factor (APF) was originally described as a protein involved in the conjugation and autoaggregation of Lactobacillus gasseri 4B2, whose corresponding apf gene was cloned and sequenced. In this report, we identified and sequenced an additional apf gene located in the region upstream of the previously published one. Inactivation of both apf genes was unsuccessful, indicating that APF function may be essential for the cell.

View Article and Find Full Text PDF