Publications by authors named "Martine Pradal"

A single strain of Candida anglica, isolated from cider, is available in international yeast collections. We present here seven new strains isolated from French PDO cheeses. For one of the cheese strains, we achieved a high-quality genome assembly of 13.

View Article and Find Full Text PDF

Sterols are a fraction of the eukaryotic lipidome that is essential for the maintenance of cell membrane integrity and its good functionality. During alcoholic fermentation, they enhance yeast growth, metabolism and viability, as well as resistance to high sugar content and ethanol stress. Grape musts clarified in excess lead to the loss of solid particles rich in sterols, resulting in sluggish and stuck fermentations.

View Article and Find Full Text PDF

Sterols are essential components of the yeast membrane and their synthesis requires oxygen. Yet, Saccharomyces cerevisiae has developed the ability to take up sterols from the medium under anaerobiosis. Here we investigated sterol uptake efficiency and the expression of genes related to sterol import in Saccharomyces and non-Saccharomyces wine yeast species fermenting under anaerobic conditions.

View Article and Find Full Text PDF

Fermentation by microorganisms is a key step in the production of traditional food products such as bread, cheese, beer and wine. In these fermentative ecosystems, microorganisms interact in various ways, namely competition, predation, commensalism and mutualism. Traditional wine fermentation is a complex microbial process performed by Saccharomyces and non-Saccharomyces (NS) yeast species.

View Article and Find Full Text PDF

, a predominant yeast genus of grape musts, includes sister species recently reported as fast evolving. The aim of this study was to investigate the genetic relationships between the four most closely related species, at the population level. A multi-locus sequence typing strategy based on five markers was applied on 107 strains, confirming the clear delineation of species , and .

View Article and Find Full Text PDF

Nitrogen composition of the grape must has an impact on yeast growth and fermentation kinetics as well as on the organoleptic properties of the final product. In some technological processes, such as white wine/rosé winemaking, the yeast-assimilable nitrogen content is sometimes insufficient to cover yeast requirements, which can lead to slow or sluggish fermentations. Growth is nevertheless quickly restored upon relief from nutrient starvation, e.

View Article and Find Full Text PDF

Nitrogen replenishment of nitrogen-starved yeast cells resulted in substantial transcriptome changes. There was an unexplained rapid, transient down-regulation of glycolytic genes. This unexpected result prompted us to search for the factors controlling these changes, among which is the possible involvement of different nutrient-sensing pathways such as the TORC1 and cAMP/PKA pathways.

View Article and Find Full Text PDF

Yeast cell death can occur during wine alcoholic fermentation. It is generally considered to result from ethanol stress that impacts membrane integrity. This cell death mainly occurs when grape musts processing reduces lipid availability, resulting in weaker membrane resistance to ethanol.

View Article and Find Full Text PDF

We evaluated the consequences of nutritional imbalances, particularly lipid/nitrogen imbalances, on wine yeast survival during alcoholic fermentation. We report that lipid limitation (ergosterol limitation in our model) led to a rapid loss of viability during the stationary phase of fermentation and that the cell death rate is strongly modulated by nitrogen availability and nature. Yeast survival was reduced in the presence of excess nitrogen in lipid-limited fermentations.

View Article and Find Full Text PDF

As a first step to investigate whether Rab GTPases are involved in grape berry development, the Vitis vinifera EST and gene databases were searched for members of the VvRab family. The grapevine genome was found to contain 26 VvRabs that could be distributed into all of the eight groups described in the literature for model plants. Genetic mapping was successfully performed; VvRabs were mostly located on independent chromosomes, apart from eight that were located on the as yet unassigned portions of the genome clustered in the ChrUn Random chromosome.

View Article and Find Full Text PDF

A beta-glucosidase enzyme activity was enriched from skins of ripe grape berry by cell wall fractionation, hydrophobic interaction and cation-exchange chromatographies. This enriched enzyme extract contained several beta-glycosidase activities hydrolyzing a wide range of synthetic and natural monoglycosides and diglycosides, as well as a beta-fructosidase activity. The enzyme extract was further characterized by two-dimensional gel electrophoresis coupled to peptide mass fingerprinting of eight spots using MALDI-TOF mass spectrometry.

View Article and Find Full Text PDF

Rop/Rac GTPases are plant-specific signalling proteins with multiple roles, some of which have implications in plant development and in hormone signal transduction. Using expressed sequence tag (EST) and gene database analyses, members of the Rop family were characterized for the first time in a perennial species (Vitis vinifera). The grapevine genome was found to contain seven expressed VvRops.

View Article and Find Full Text PDF

A proteomic approach has been used to study changes in leaf protein content from plants transformed for alcohol dehydrogenase (ADH) activity. Individual quantitative analysis of 190-436 spots separated by two-dimensional electrophoresis was performed, and spots displaying significant quantitative changes between control (C), sense (S), and antisense (R) transformants were selected using Student's t test. Of the 14 spots selected and further analyzed after trypsic digestion, 9 could be identified by MS analysis and 5 by LC-MS/MS.

View Article and Find Full Text PDF

The functional role of Adh in regulating susceptibility to abiotic stress and the synthesis of secondary metabolites was investigated in transgenic grapevine plants over- and underexpressing alcohol dehydrogenase (Adh). Plants were transformed with gene constructs containing a sense or antisense orientated grapevine VvAdh2 cDNA under the constitutive cauliflower mosaic virus 35S promoter. Plants transformed with either antisense orientation or the Adh-less construct displayed a low but detectable constitutive ADH activity, whereas plants transformed with the sense-expressed transgene showed a significantly higher (100-fold) ADH activity than the control.

View Article and Find Full Text PDF

Although grape berries have been classified as non-climacteric fruits, ongoing studies on grape ethylene signalling challenge the role of ethylene in their ripening. One of the significant molecular changes in berries is the up-regulation of ADH (alcohol dehydrogenase, EC 1.1.

View Article and Find Full Text PDF