Publications by authors named "Martine Potin-Gautier"

An analytical methodology was developed to characterize the colloidal distribution of trace elements of interest in environmental waters sampled in a same site and enables the different colloidal distributions from waters to be compared. The purpose was to provide consistent information related to the origin and nature of colloids responsible for the transport of trace element(s). The work was motivated by the observed enhanced mobility of uranium in soil.

View Article and Find Full Text PDF

Selenium adsorption onto oxy-hydroxides mainly controls its mobility in volcanic soils, red earths and soils poor in organic matter (OM) while the influence of OM was emphasized in podzol and peat soils. This work aims at deciphering how those solid phases influence ambient Se mobility and speciation under less contrasted conditions in 26 soils spanning extensive ranges of OM (1-32%), Fe/Al oxy-hydroxides (0.3-6.

View Article and Find Full Text PDF

The methodological approach used to robustly optimize the characterization of the polydisperse colloidal phase of drain water samples is presented. The approach is based on asymmetric flow field-flow fractionation coupled to online ultraviolet/visible spectrophotometry, multi-angle light scattering, and inductively coupled plasma mass spectrometry. Operating factors such as the amount of sample injected and the ratio between main-flow and cross-flow rates were considered.

View Article and Find Full Text PDF

A better understanding of Se fate in soils is required for different environmental issues, such as radioactive waste management or soil fertilization procedures. In these contexts, the mobility and speciation of Se have to be studied at both short and long terms after Se inputs. Here, we present a new methodology to monitor simultaneously the reactivity of added (isotopic enriched tracers) and ambient Se at trace level in soils by high-performance liquid chromatography inductively coupled plasma mass spectrometry (ICP-MS) following specific extractions.

View Article and Find Full Text PDF

The objective of this study was to show that on-line asymmetric flow-field flow fractionation (AFFFF)-multidetection coupling is useful for studying environmental colloids in a qualitative and quantitative way. The utility of the technique was illustrated by assessing the colloidal fraction of the copper that was extracted from the soil, transferred to an aqueous phase and then transported by drain waters in a wine-growing area. To determine the size and composition of the colloids, AFFFF was coupled to UV, multi-angle light scattering and inductively coupled plasma mass spectrometry detectors.

View Article and Find Full Text PDF

A long-term application of copper-based fungicides to fight against downy mildew has led to soil contamination by copper particularly in Aquitaine region where viticulture is important. This work aims to statistically validate the origin of diffuse contamination of Aquitaine agricultural soils and show that contamination is closely related to wine-growing in this region. For this purpose, several national databases have been used.

View Article and Find Full Text PDF

This paper deals with the study of uranium-colloid interactions in a carbonated soil. The work is focused on the immediately available fraction obtained after a leaching process, according to a normalized batch method. In order to characterize the different colloidal carriers, Asymmetrical Flow Field-Flow Fractionation (As-Fl-FFF) coupled to different detectors (UV, Multi Angle Laser Light Scattering (MALLS) and Inductively coupled Plasma-Mass Spectrometry (ICP-MS)) was used.

View Article and Find Full Text PDF

Background: Selenium is an essential element which can be toxic if ingested in excessive quantities. The main human exposure is food. In addition, intake may be boosted by consumption drinking water containing unusual high selenium concentration.

View Article and Find Full Text PDF

This paper describes the development of an analytical methodology to determine speciation of selenium present in soils at trace level (μg kg(-1)). The methodology was based on parallel single extractions and high performance liquid chromatography hyphenated to inductively coupled plasma mass spectrometry (HPLC-ICPMS). Two complementary chromatographic separations were used to confirm Se species identity.

View Article and Find Full Text PDF

Asymmetrical flow field-flow fractionation (AFlFFF) hyphenated to multi-angle laser-light scattering (MALS) was evaluated in order to determine single walled carbon nanotube (SWCNT) length distribution. Fractionation conditions were investigated by examining mobile phase ionic strength and pH, channel components and cross-flow rate. Ammonium nitrate-based mobile phase with 10(-5)molL(-1) ionic strength and pH 6 allows the highest sample recovery (89±3%) to be obtained and the lowest loss of the longest SWCNT.

View Article and Find Full Text PDF

The aim of the present study was to investigate selenate toxicity in the unicellular green algae Chlamydomonas reinhardtii as a function of sulphate ion concentration and the relationship with intracellular bioaccumulation. The toxicity of selenate was evaluated by measuring the effect of different selenate concentrations on algal growth during a 96h exposure period. A non-linear regression according to the Hill model was used to describe the dose-effect relationship and estimate the effect concentrations (EC) of selenate.

View Article and Find Full Text PDF

The aim of this study was to characterize colloids associated with uranium by using an on-line fractionation/multi-detection technique based on asymmetrical flow field-flow fractionation (As-Fl-FFF) hyphenated with UV detector, multi angle laser light scattering (MALLS) and inductively coupling plasma-mass spectrometry (ICP-MS). Moreover, thanks to the As-Fl-FFF, the different colloidal fractions were collected and characterized by a total organic carbon analyzer (TOC). Thus it is possible to determine the nature (organic or inorganic colloids), molar mass, size (gyration and hydrodynamic radii) and quantitative uranium distribution over the whole colloidal phase.

View Article and Find Full Text PDF

Analysis of organotin compounds in vegetal samples is not well documented, and no specific extraction procedure of those species from vegetal matrix can be found in the literature. In order to develop such a procedure, we have compared in a first step the performances of six extracting solutions based on HCl, CH(3)COOH, NaOH, TMAH, enzymatic mixture and ethyl ethanoate. HCl-based extraction gives the highest recoveries.

View Article and Find Full Text PDF

Chemical frosting is used as a surface decorating method by many glass package producers. After immersion in an acid frosting bath, glass items present the desired frosted effect. The perception of this particular effect is due to the formation of a microscopic crystalline pattern on the glass surface, which scatters light passing through the glass surface.

View Article and Find Full Text PDF

This paper focuses on the analytical performance improvement of the coupled technique HPLC-ICPMS using on-line collision/reaction cell technology for selenium elemental and speciation analyses at the ng (Se) l(-1) level in aquatic environment. Collision/reaction cell operating parameters were optimised, resulting in selected conditions of 5.5 ml min(-1) H(2) and 0.

View Article and Find Full Text PDF

An investigation of the operating conditions of a pulsed flame photometric detection (PFPD) system for the determination of organotin compounds (OTCs) in sewage sludge is reported. During the analyses, some spectral interferences were observed. For their elimination detector parameters such as gate delay and gate width were investigated.

View Article and Find Full Text PDF

Results relating to the first original application of an analytical approach combining asymmetric flow field-flow fractionation (As-Fl-FFF) with multi-detection and chemical speciation for determination of organotins in a landfill leachate sample are presented. The speciation analysis involved off-line head-space solid-phase microextraction (HS-SPME)-gas chromatography with pulsed-flame photometric detection (GC-PFPD) performed after three consecutive collections of five different fractions of interest from the As-Fl-FFF system and cross-flow part (assumed to be representative of the <10 kDa phase). After 0.

View Article and Find Full Text PDF

An analytical method devoted to organotin compounds (OTC) determination in brandy and wine was developed. It is based on solid-phase microextraction (SPME) of ethylated organotins. The following operating factors were examined: SPME mode/nature of fibre coating, sample volume/dilution, and sampling time.

View Article and Find Full Text PDF

Speciation analysis of antimony in marine biota is not well documented, and no specific extraction procedure of antimony species from algae and mollusk samples can be found in the literature. This work presents a suitable methodology for the speciation of antimony in marine biota (algae and mollusk samples). The extraction efficiency of total antimony and the stability of Sb(III), Sb(V) and trimethylantimony(V) in different extraction media (water at 25 and 90 degrees C, methanol, EDTA and citric acid) were evaluated by analyzing the algae Macrosystis integrifolia (0.

View Article and Find Full Text PDF

In this work, we have undertaken the construction of a screen-printed electrode modified by a specific membrane to protect the working surface from interferences during the analysis of trace metals by anodic stripping voltammetry. Different crown-ethers selected for their metals affinity have been incorporated into a membrane then deposed on the working surface of the electrode. Each modified electrode has been first tested in an acidified KNO3 10(-1) mol L(-1) solution (pH 2) doped by free Cd2+ and Pb2+ ions.

View Article and Find Full Text PDF

As environmental impacts of landfill last from beginning of cell filling to many years after, there is an increasing interest in monitoring landfill leachate composition especially with regards to metals and metalloids. High-performance liquid chromatography (HPLC) coupled with inductively coupled plasma mass spectrometry (ICP-MS) has been applied to the speciation of arsenic in landfill leachates. The difficulty is related to the complexity and heterogeneity of leachate matrices.

View Article and Find Full Text PDF

The optimisation of ICPMS collision/reaction cell conditions for the simultaneous analysis of arsenic and selenium is described. A mixture of 3.8mL min(-1) of H(2) and 0.

View Article and Find Full Text PDF

A high performance liquid chromatography procedure, based on porous graphitic carbon stationary phase, was evaluated for simultaneous on-line preconcentration and separation of organic and inorganic selenium species. Detection was achieved by inductively coupled plasma mass spectrometry with collision/reaction cell (ICP-CRC-MS). Different concentrations of formic acid were tested as mobile phase.

View Article and Find Full Text PDF

This paper presents an improvement for the simultaneous separation of Sb(V), Sb(III) and (CH3)3SbCl2 species by high performance liquid chromatography (HPLC) and its detection by hydride generation-atomic fluorescence spectrometry (HG-AFS). The separation was performed on an anion exchange column PRP-X100 using a gradient elution program between EDTA/KHP (potasium hydrogen phtalate) as first mobile phase and phosphate solutions solution as the second one. The chromatographic separation and the HG-AFS parameters were optimized by experimental design.

View Article and Find Full Text PDF

A method based on Headspace solid-phase microextraction (HS-SPME, with a 100 mum PDMS-fiber) in combination with gas-chromatography and pulsed flame-photometric detection (GC-PFPD) has been investigated for simultaneous determination of eight organotin compounds. Monobutyltin (MBT), dibutyltin (DBT), tributyltin (TBT), monophenyltin (MPhT), and the semi-volatile diphenyltin (DPhT), triphenyltin (TPhT), monooctyltin (MOcT), and dioctyltin (DOcT) were determined after derivatization with sodium tetraethylborate. The conditions used for the extraction and preconcentration step were optimised by experimental design methodology.

View Article and Find Full Text PDF