Publications by authors named "Martine Poitevin"

In the frame of our molecular imaging activities, a PEGylated lipopeptide has been developed as a specific ligand for the human vascular endothelial growth factor receptor 2, which is considered as one of the important molecular marker of angiogenesis. In this study, the potential of affinity capillary electrophoresis (ACE) is evaluated to measure the interactions of an active PEGylated lipopeptide, its hydrolysis product and its precursor consisting of a peptide structure with different micelles including Brij-35, Tween-20, and pegylated phospholipids. Given the amphiphilic structure of the PEGylated lipopeptide, a MEKC method allowing the simultaneous separation of the compounds of interest was set up, using low percentages of acetonitrile.

View Article and Find Full Text PDF

Capillary zone electrophoresis (CZE) in classical buffer-based background electrolytes (BGEs) and carrier ampholytes-based capillary electrophoresis (CABCE) using narrow pH cuts of carrier ampholytes (CA) as constituents of quasi-isoelectric BGEs have been applied to separation and characterization of synthetic human and salmon gonadotropin-releasing hormones (GnRH) and their derivatives and fragments. The selectivity, separation efficiency, resolution and speed of CZE and CABCE analyses have been compared within a wide pH range of the BGEs (3.50-9.

View Article and Find Full Text PDF

The use of glass and PDMS microchips has been investigated to perform rapid and efficient separation of allergenic whey proteins by IEF. To decrease EOF and to limit protein adsorption, two coating procedures have been compared. The first one consists in immobilizing hydroxypropyl cellulose (HPC) and the second one poly(dimethylacrylamide-co-allyl glycidyl ether) (PDMA-AGE).

View Article and Find Full Text PDF

A novel versatile method for the determination of low or high electroosmotic mobility values in microdevices of variable microchannel design is presented. The electroosmotic flow (EOF) calculation is based on the difference between the apparent and effective mobilities of a reference compound. The proposed method uses microchip frontal electrophoresis for the determination of these mobilities.

View Article and Find Full Text PDF

The use of quasi-isoelectric buffers consisting of narrow pH cuts of carrier ampholytes (NC) has been investigated to limit protein adsorption on capillary walls during capillary zone electrophoresis experiments. To quantify protein adsorption on the silica surface, a method derived from that of Towns and Regnier has been developed. alpha-Lactalbumin (14 kDa, pI 4.

View Article and Find Full Text PDF

The use of quasi-isoelectric anolytes and catholytes has been investigated to improve CIEF performances. Narrow pH cuts of carrier ampholytes (NC) have been compared to more conventional couples of anolytes/catholytes (phosphoric acid/sodium hydroxide and glutamic acid/lysine). First, a CIEF setup that consists in a bare silica capillary and 70:30 water/glycerol separation medium has been used.

View Article and Find Full Text PDF

Two capillary isoelectric focusing (CIEF) systems have first been optimized: one uses a bare silica capillary and 30% (v/v) of glycerol in the separation medium while the other uses a coated capillary and an aqueous background electrolyte. To perform permanent capillary coating, two neutral polymers have been compared: hydroxypropylcellulose (HPC) and polyvinylalcohol (PVA). HPC coating gave best results for electroosmotic flow (EOF) limitation on a wide pH range: as compared to a bare silica capillary, it allowed to decrease EOF by 96% at pH 7.

View Article and Find Full Text PDF