Background: RhoA GTPases play critical roles in actin cytoskeletal remodeling required for controlling a diverse range of cellular functions including cell proliferation, adhesion, migration and changes in cell shape, all required for cutaneous wound healing. RhoA cycles between an active GTP-bound and an inactive GDP-bound form, a process regulated by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). ARHGAP29 is a GAP expressed in skin keratinocytes and is decreased in the absence of interferon regulator factor 6, a critical regulator of cell proliferation, migration, and wound healing.
View Article and Find Full Text PDFInterferon Regulatory Factor 6 (IRF6) is a transcription factor essential for keratinocyte cell-cell adhesions. Previously, we found that recycling of E-cadherin was defective in the absence of IRF6, yet total E-cadherin levels were not altered, suggesting a previously unknown, nontranscriptional function for IRF6. IRF6 protein contains a DNA binding domain (DBD) and a protein binding domain (PBD).
View Article and Find Full Text PDFBackground: RhoA GTPase plays critical roles in actin cytoskeletal remodeling required for controlling a diverse range of cellular functions including cell proliferation, cell adhesions, migration and changes in cell shape. RhoA cycles between an active GTP-bound and an inactive GDP-bound form, a process that is regulated by guanine nucleotide exchange factors (GEFs), and GTPase-activating proteins (GAPs). ARHGAP29 is a GAP expressed in keratinocytes of the skin and is decreased in the absence of Interferon Regulator Factor 6, a critical regulator of cell proliferation and migration.
View Article and Find Full Text PDFMorphogenesis requires a tight coordination between mechanical forces and biochemical signals to inform individual cellular behavior. For these developmental processes to happen correctly the organism requires precise spatial and temporal coordination of the adhesion, migration, growth, differentiation, and apoptosis of cells originating from the three key embryonic layers, namely the ectoderm, mesoderm, and endoderm. The cytoskeleton and its remodeling are essential to organize and amplify many of the signaling pathways required for proper morphogenesis.
View Article and Find Full Text PDFIRF6 is a transcription factor that is required for craniofacial development and epidermal morphogenesis. Specifically, Irf6-deficient mice lack the terminally differentiated epidermal layers, leading to an absence of barrier function. This phenotype also includes intraoral adhesions due to the absence of the oral periderm, leading to the mislocalization of E-cadherin and other cell‒cell adhesion proteins of the oral epithelium.
View Article and Find Full Text PDFBackground: Orofacial clefts (OFCs) are common birth defects with complex etiology. Genome wide association studies for OFC have identified SNPs in and near MAFB. MAFB is a transcription factor critical for structural development of digits, kidneys, skin, and brain.
View Article and Find Full Text PDFThe murine excisional wound model has been used extensively to study each of the sequentially overlapping phases of wound healing: inflammation, proliferation and remodeling. Murine wounds have a histologically well-defined and easily recognizable wound bed over which these different phases of the healing process are measurable. Within the field, it is common to use an arbitrarily defined "middle" of the wound for histological analyses.
View Article and Find Full Text PDFBackground: The development of the face occurs during the early days of intrauterine life by the formation of facial processes from the first Pharyngeal arch. Derangement in these well-organized fusion events results in Orofacial clefts (OFC). Van der Woude syndrome (VWS) is one of the most common causes of syndromic cleft lip and/or palate accounting for 2% of all cases.
View Article and Find Full Text PDFBackground: Van der Woude syndrome (VWS) is the most common form of syndromic orofacial cleft caused predominantly by mutations in Interferon Regulatory Factor 6 (IRF6). We previously reported that individuals with VWS have increased risk of wound healing complications following cleft repair compared with individuals with nonsyndromic orofacial clefts (nonsyndromic cleft lip and palate-NSCLP). In vitro, absence of IRF6 leads to impaired keratinocyte migration and embryonic wound healing.
View Article and Find Full Text PDFVariations in the arterial, venous, and ureteral patterning of the right (r) and left (l) kidneys are common; however, concomitant involvement with all three systems is rare. Specimens that demonstrate anatomic variation across multiple systems provide an opportunity to illustrate links between anatomic concepts, embryologic development, clinical practice, and education. During anatomic study of the abdominal cavity, a total of five major arteries (3l and 2r) emerged from the aortic and common iliac axes in a cadaveric donor.
View Article and Find Full Text PDFBackground: Recent advances in genomics methodologies, in particular the availability of next-generation sequencing approaches have made it possible to identify risk loci throughout the genome, in particular the exome. In the current study, we present findings from an exome study conducted in five affected individuals of a multiplex family with cleft palate only.
Methods: The GEnome MINIng (GEMINI) pipeline was used to functionally annotate the single nucleotide polymorphisms, insertions and deletions.
Objective: Interferon Regulatory Factor 6 (IRF6) is critical for craniofacial development, epidermal differentiation, and tissue repair. IRF6 mutations cause Van der Woude Syndrome (VWS) and Popliteal Pterygium Syndrome. Individuals with VWS exhibit craniofacial anomalies, including cleft lip and palate and lip pits.
View Article and Find Full Text PDFInterferon Regulatory Factor (IRF) 6, a member of the IRF family, is essential for epidermal and orofacial embryonic development. Irf6 is strongly expressed in keratinocytes, in which it regulates epidermal proliferation, differentiation, and migration. A recent role for Irf6 in Toll-like receptor 2-dependent chemokine gene expression was also reported in an epithelial cell line.
View Article and Find Full Text PDFNon-syndromic (NS) cleft lip with or without cleft palate (CL/P) is a common disorder with a strong genetic underpinning. Genome-wide association studies have detected common variants associated with this disorder, but a large portion of the genetic risk for NSCL/P is conferred by unidentified rare sequence variants. Mutations in IRF6 (Interferon Regulatory Factor 6) and GRHL3 (Grainyhead-like 3) cause Van der Woude syndrome, which includes CL/P.
View Article and Find Full Text PDFThe popliteal pterygia syndromes are a distinct subset of the hundreds of Mendelian orofacial clefting syndromes. Popliteal pterygia syndromes have considerable variability in severity and in the associated phenotypic features but are all characterized by cutaneous webbing across one or more major joints, cleft lip and/or palate, syndactyly, and genital malformations. Heterozygous mutations in IRF6 cause popliteal pterygium syndrome (PPS) while homozygous mutations in RIPK4 or CHUK (IKKA) cause the more severe Bartsocas-Papas syndrome (BPS) and Cocoon syndrome, respectively.
View Article and Find Full Text PDFBackground: The reparative mechanism that operates following post-natal cutaneous injury is a fundamental survival function that requires a well-orchestrated series of molecular and cellular events. At the end, the body will have closed the hole using processes like cellular proliferation, migration, differentiation and fusion.
Results: These processes are similar to those occurring during embryogenesis and tissue morphogenesis.
Interferon regulatory factor 6 (Irf6) regulates keratinocyte proliferation and differentiation. In this study, we tested the hypothesis that Irf6 regulates cellular migration and adhesion. Irf6-deficient embryos at 10.
View Article and Find Full Text PDFIn order to understand the link between the genetic background of patients and wound clinical outcomes, it is critical to have a reliable method to assess the phenotypic characteristics of healed wounds. In this study, we present a novel imaging method that provides reproducible, sensitive, and unbiased assessments of postsurgical scarring. We used this approach to investigate the possibility that genetic variants in orofacial clefting genes are associated with suboptimal healing.
View Article and Find Full Text PDFMutations in interferon regulatory factor 6 (IRF6) account for ∼70% of cases of Van der Woude syndrome (VWS), the most common syndromic form of cleft lip and palate. In 8 of 45 VWS-affected families lacking a mutation in IRF6, we found coding mutations in grainyhead-like 3 (GRHL3). According to a zebrafish-based assay, the disease-associated GRHL3 mutations abrogated periderm development and were consistent with a dominant-negative effect, in contrast to haploinsufficiency seen in most VWS cases caused by IRF6 mutations.
View Article and Find Full Text PDFOrofacial clefts are among the commonest birth defects. Among many genetic contributors to orofacial clefting, Interferon Regulatory Factor 6 (IRF6) is unique since mutations in this gene cause Van der Woude (VWS), the most common clefting syndrome. Furthermore, variants in IRF6 contribute to increased risk for non-syndromic cleft lip and/or palate (NSCL/P).
View Article and Find Full Text PDFEpidermolytic ichthyosis (EI) is a rare skin disorder characterized by generalized erythroderma and cutaneous blistering at birth, which is substituted by hyperkeratosis later in life. It is caused by autosomal dominant mutations in highly conserved regions of and . To date, only 4 mutations with autosomal recessive inheritance of EI have been described in consanguineous families.
View Article and Find Full Text PDFTo adequately and permanently restore organ function after grafting, human tissue-engineered skin substitutes (TESs) must ultimately contain and preserve functional epithelial stem cells (SCs). It is therefore essential that a maximum of SCs be preserved during each in vitro step leading to the production of TESs such as the culture process and the elaboration of a skin cell bank by cryopreservation. To investigate the presence and functionality of epithelial SCs within the human TESs made by the self-assembly approach, slow-cycling cells were identified using 5'-bromo-2'-deoxyuridine (BrdU) in the three-dimensional construct.
View Article and Find Full Text PDF