Publications by authors named "Martine Devillers"

Apolipoprotein (apo) E mutants are associated with type III hyperlipoproteinemia characterized by high cholesterol and triglycerides levels. Autosomal dominant hypercholesterolemia (ADH), due to the mutations in the LDLR, APOB, or PCSK9 genes, is characterized by an isolated elevation of cholesterol due to the high levels of low-density lipoproteins (LDLs). We now report an exceptionally large family including 14 members with ADH.

View Article and Find Full Text PDF

Autosomal Dominant Hypercholesterolemia (ADH), characterized by isolated elevation of plasmatic LDL cholesterol and premature cardiovascular complications, is associated with mutations in 3 major genes: LDLR (LDL receptor), APOB (apolipoprotein B) and PCSK9(proprotein convertase subtilisin-kexin type 9). Through the French ADH Research Network, we collected molecular data from 1358 French probands from eleven different regions in France.Mutations in the LDLR gene were identified in 1003 subjects representing 391 unique events with 46.

View Article and Find Full Text PDF

We have recently reported a case of cutis laxa caused by a fibulin-5 missense mutation (p.C217R). Skin fibroblasts from this individual showed an abnormal pattern of expression of several genes coding for elastic fiber-related proteins, including lysyl oxidase-like-1 (LOXL1).

View Article and Find Full Text PDF

Autosomal dominant hypercholesterolemia (ADH) is characterized by isolated increase in plasmatic low-density lipoprotein (LDL) cholesterol levels associated with high risk of premature cardiovascular disease. Mutations in LDLR, APOB, and PCSK9 genes have been shown to cause ADH. We now report further genetic heterogeneity of ADH through the study of a large French family in which the involvement of these three genes was excluded.

View Article and Find Full Text PDF

Hypercholesterolemia is one of the major causes of coronary heart disease (CHD). The genes encoding the low-density lipoprotein receptor and its ligand apolipoprotein B, have been the two genes classically implicated in autosomal dominant hypercholesterolemia (ADH). Our discovery in 2003 of the first mutations of the proprotein convertase subtilisin kexin 9 gene (PCSK9) causing ADH shed light on an unknown actor in cholesterol metabolism that since then has been extensively investigated.

View Article and Find Full Text PDF

Cutis laxa (CL) is a rare genodermatosis, which is clinically and genetically heterogeneous. It is characterized by redundant, loose, sagging, and inelastic skin. In a consanguineous family from Lebanon with autosomal-recessive transmission, we identified a homozygous missense mutation (c.

View Article and Find Full Text PDF

Autosomal dominant hypercholesterolemia (ADH) is a frequent (1/500) monogenic inherited disorder characterized by isolated elevation of LDL leading to premature cardiovascular disease. ADH is known to result from mutations at two main loci: LDLR (encoding the low density lipoprotein receptor), and APOB (encoding apolipoprotein B100), its natural ligand. We previously demonstrated that ADH is also caused by mutations of the PCSK9 (proprotein convertase subtilisin/kexin type 9) gene that encodes Narc-1 (neural apoptosis-regulated convertase 1).

View Article and Find Full Text PDF

Autosomal dominant hypercholesterolemia (ADH; OMIM144400), a risk factor for coronary heart disease, is characterized by an increase in low-density lipoprotein cholesterol levels that is associated with mutations in the genes LDLR (encoding low-density lipoprotein receptor) or APOB (encoding apolipoprotein B). We mapped a third locus associated with ADH, HCHOLA3 at 1p32, and now report two mutations in the gene PCSK9 (encoding proprotein convertase subtilisin/kexin type 9) that cause ADH. PCSK9 encodes NARC-1 (neural apoptosis regulated convertase), a newly identified human subtilase that is highly expressed in the liver and contributes to cholesterol homeostasis.

View Article and Find Full Text PDF