Altered radiation responses by STI571 (Imatinib, Glivec), a specific inhibitor of the tyrosine kinase activity of Bcr-Abl, was assessed in K562 chronic myelogenous leukemia cells using growth inhibition and colony formation assays. Flow cytometry, Western blotting, and microscope observation were used to determine cell cycle redistribution, erythroid differentiation, apoptosis, necrosis, senescence, and expression and phosphorylation of effectors downstream from Bcr-Abl as endpoints. STI571 (> or =24-h contact) retarded the growth of K562 cells and elicited reduction in the G(2)-phase content due to an efficient arrest in early S phase rather than to the disruption of the G(2) checkpoint as confirmed by analysis of Lyn and CDK1 phosphorylation.
View Article and Find Full Text PDFIn a program to optimize the anti-HIV activity of the 4-benzyl and 4-benzoyl-3-dimethylaminopyridinones 9 and 10, lead compounds in a new class of highly potent non-nucleoside type inhibitors of HIV-1 reverse transcriptase, modification of the alkyl substitutents at the C-5 and C-6 positions on the pyridinone ring and of the substitutents on the C-3 amino group has been studied. Of the 17 new 5/6-modified analogues prepared, compounds 31b and 32b substituted at C-5 by an extended nonpolar chain containing an ether function and a C-6 methyl group and compound 35 bearing a C-5 ethyl/C-6 hydroxymethyl substituent pattern were selected on the basis of their in vitro activity against wild-type HIV and the three principle mutant strains, K103N, Y181C, and Y188L. When tested further, it was shown that these molecules, and in particular compound 35, are globally more active than 9, 10, and efavirenz against an additional eight single [L100I, K101E, V106A, E138K, V179E, G190A/S, and F227C] and four double HIV mutant strains [L100I + K103N, K101E + K103N, K103N + Y181C, and F227L + V106A], which are clinically relevant.
View Article and Find Full Text PDF