Publications by authors named "Martine Comisso"

ExoY virulence factors are members of a family of bacterial nucleotidyl cyclases (NCs) that are activated by specific eukaryotic cofactors and overproduce cyclic purine and pyrimidine nucleotides in host cells. ExoYs act as actin-activated NC toxins. Here, we explore the Vibrio nigripulchritudo Multifunctional-Autoprocessing Repeats-in-ToXin (MARTX) ExoY effector domain (Vn-ExoY) as a model for ExoY-type members that interact with monomeric (G-actin) instead of filamentous (F-actin) actin.

View Article and Find Full Text PDF

Many pathogens manipulate host cell cAMP signaling pathways to promote their survival and proliferation. Bacterial Exoenzyme Y (ExoY) toxins belong to a family of invasive, structurally-related bacterial nucleotidyl cyclases (NC). Inactive in bacteria, they use proteins that are uniquely and abundantly present in eukaryotic cells to become potent, unregulated NC enzymes in host cells.

View Article and Find Full Text PDF

Replication of human immunodeficiency virus type 1 (HIV-1) requires the packaging of tRNA from the host cell into the new viral particles. The GagPol viral polyprotein precursor associates with mitochondrial lysyl-tRNA synthetase (mLysRS) in a complex with tRNA, an essential step to initiate reverse transcription in the virions. The C-terminal integrase moiety of GagPol is essential for its association with mLysRS.

View Article and Find Full Text PDF

Biallelic missense mutations in MARS are responsible for rare but severe cases of pulmonary alveolar proteinosis (PAP) prevalent on the island of La Réunion. MARS encodes cytosolic methionyl-tRNA synthetase (MetRS), an essential translation factor. The multisystemic effects observed in patients with this form of PAP are consistent with a loss-of-function defect in an ubiquitously expressed enzyme.

View Article and Find Full Text PDF

Background: An important step in human immunodeficiency virus type 1 (HIV-1) replication is the packaging of tRNA from the host cell, which plays the role of primer RNA in the process of initiation of reverse transcription. The viral GagPol polyprotein precursor, and the human mitochondrial lysyl-tRNA synthetase (mLysRS) from the host cell, have been proposed to be involved in the packaging process. More specifically, the catalytic domain of mLysRS is supposed to interact with the transframe (TF or p6*) and integrase (IN) domains of the Pol region of the GagPol polyprotein.

View Article and Find Full Text PDF

In human, the cytoplasmic (cLysRS) and mitochondrial (mLysRS) species of lysyl-tRNA synthetase are encoded by a single gene. Following HIV-1 infection, mLysRS is selectively taken up into viral particles along with the three tRNA isoacceptors. The GagPol polyprotein precursor is involved in this process.

View Article and Find Full Text PDF

The cytoplasmic and mitochondrial species of human lysyl-tRNA synthetase are encoded by a single gene by means of alternative splicing of the KARS1 gene. The cytosolic enzyme possesses a eukaryote-specific N-terminal polypeptide extension that confers on the native enzyme potent tRNA binding properties required for the vectorial transfer of tRNA from the synthetase to elongation factor EF1A within the eukaryotic translation machinery. The mitochondrial enzyme matures from its precursor upon being targeted to that organelle.

View Article and Find Full Text PDF

Cytosolic and mitochondrial lysyl-tRNA synthetases (LysRS) are encoded by a single gene and can be distinguished only according to their very N-terminal sequences. It was believed that cytosolic LysRS is packaged into HIV-1 virions via its association with Gag. Using monospecific antibodies, it was later shown that only the mitochondrial LysRS is taken up in viral particles along with tRNA(3)(Lys), the primer for reverse transcription of the HIV-1 genome.

View Article and Find Full Text PDF

Tagging of proteins in vivo by covalent attachment of a biotin moiety has emerged as a new prospective tool for protein detection and purification. Previously, we established a strategy for expression of in vivo biotinylated proteins in mammalian cells. It is based on coexpression of the protein of interest fused to a short biotin acceptor peptide and biotin ligase BirA cloned in the same vector.

View Article and Find Full Text PDF

Purpose: To characterize the activities of irofulven, a novelanticancer agent derived from the mushroom natural productilludin S toward human cancer cells.

Experimental Design: We have determined the activity spectrum of irofulven toward a human tumor cell panel comprised of 10 different tumor types in comparison with cisplatin and ET-743. We have also evaluated the influence of major resistance mechanisms, such as expression of multidrug resistance-associated drug efflux pumps, cisplatin resistance, loss of p53 function, and absence of mismatch repair on the cytotoxic activity of irofulven.

View Article and Find Full Text PDF