Tubulogenesis is an essential component of organ development, yet the underlying cellular mechanisms are poorly understood. We analyze here the formation of the Drosophila melanogaster cardiac lumen that arises from the migration and subsequent coalescence of bilateral rows of cardioblasts. Our study of cell behavior using three-dimensional and time-lapse imaging and the distribution of cell polarity markers reveals a new mechanism of tubulogenesis in which repulsion of prepatterned luminal domains with basal membrane properties and cell shape remodeling constitute the main driving forces.
View Article and Find Full Text PDFIn the Drosophila larval cardiac tube, aorta and heart differentiation are controlled by the Hox genes Ultrabithorax (Ubx) and abdominal A (abdA), respectively. There is evidence that the cardiac tube undergoes extensive morphological and functional changes during metamorphosis to form the adult organ, but both the origin of adult cardiac tube myocytes and the underlying genetic control have not been established. Using in vivo time-lapse analysis, we show that the adult fruit fly cardiac tube is formed during metamorphosis by the reprogramming of differentiated and already functional larval cardiomyocytes, without cell proliferation.
View Article and Find Full Text PDFThe segmented Drosophila linear cardiac tube originates from two cell lineages that give rise to the anterior aorta (AA) and the posterior cardiac tube. The three Hox genes of the Bithorax Complex as well as Antennapedia (Antp) have been shown to be expressed in the posterior cardiac tube, while no Hox gene is expressed in the anterior aorta. We show that the cells of the whole tube adopt the anterior aorta identity in the complete absence of Hox function.
View Article and Find Full Text PDFIn Drosophila, the heart is composed of a simple linear tube constituted of 52 pairs of myoendothelial cells which differentiate during embryogenesis to build up a functional mature organ. The cardiac tube is a contractile organ with autonomous muscular activity which functions as a hemolymph pump in an open circulatory circuit. The cardiac tube is organized in metamers which contain six pairs of cardioblasts per segment.
View Article and Find Full Text PDFThe Drosophila larval cardiac tube is composed of 104 cardiomyocytes that exhibit genetic and functional diversity. The tube is divided into the aorta and the heart proper that encompass the anterior and posterior parts of the tube, respectively. Differentiation into aorta and heart cardiomyocytes takes place during embryogenesis.
View Article and Find Full Text PDFThe steps that lead to the formation of a single primitive heart tube are highly conserved in vertebrate and invertebrate embryos. Concerted migration of the two lateral cardiogenic regions of the mesoderm and endoderm (or ectoderm in invertebrates) is required for their fusion at the midline of the embryo. Morphogenetic signals are involved in this process and the extracellular matrix has been proposed to serve as a link between the two layers of cells.
View Article and Find Full Text PDF