Muscle strength is an important determinant in elite sports performance as well as in the activities of daily living. Muscle metabolism also plays a role in the genesis, and therefore prevention, of common pathological conditions and chronic diseases. Even though heritability estimates between 31 and 78% suggest a significant genetic component in muscle strength, only a limited number of genes influencing muscle strength have been identified.
View Article and Find Full Text PDFThe torque-velocity relationship is known to be affected by ageing, decreasing its protective role in the prevention of falls. Interindividual variability in this torque-velocity relationship is partly determined by genetic factors (h(2): 44-67%). As a first attempt, this genome-wide linkage study aimed to identify chromosomal regions linked to the torque-velocity relationship of the knee flexors and extensors.
View Article and Find Full Text PDFFine mapping of linkage peaks is one of the great challenges facing researchers who try to identify genes and genetic variants responsible for the variation in a certain trait or complex disease. Once the trait is linked to a certain chromosomal region, most studies use a candidate gene approach followed by a selection of polymorphisms within these genes, either based on their possibility to be functional, or based on the linkage disequilibrium between adjacent markers. For both candidate gene selection and SNP selection, several approaches have been described, and different software tools are available.
View Article and Find Full Text PDFThe purpose of the present study was to examine genetic and environmental contributions to individual differences in maximal isometric, concentric and eccentric muscle strength and muscle cross-sectional area (MCSA) of the elbow flexors. A generality versus specificity hypothesis was explored to test whether the 4 strength variables share a genetic component or common factors in the environment or whether the genetic/environmental factors are specific for each strength variable. The 4 variables under study were measured in 25 monozygotic and 16 dizygotic male Caucasian twin pairs (22.
View Article and Find Full Text PDFGenotypic associations between polymorphisms in the ciliary neurotrophic factor (CNTF) and CNTF receptor (CNTFR) genes and muscular strength phenotypes in 154 middle-aged men (45-49 yr) and 138 women (38-44 yr) and 99 older men (60-78 yr) and 102 older women (60-80 yr) were tested to validate earlier association studies. Allelic interaction effects were hypothesized between alleles of CNTF and CNTFR. We performed analysis of covariance with age, height, and fat-free mass (FFM) as covariates.
View Article and Find Full Text PDFThis study explores the associations between polymorphisms in two candidate genes-myostatin gene (MSTN or GDF8) and angiotensin-converting enzyme (ACE) gene-with interindividual differences in human muscle mass and strength responses to strength training. The MSTN AluI A55T (exon 1), BanII K153R, TaqI E164 K and BstNI P198A (all in exon 2) markers and the ACE insertion (I)/deletion (D) polymorphism were typed in 57 males [22.4 (3.
View Article and Find Full Text PDF