Publications by authors named "Martina Verza"

Pyruvate dehydrogenase kinase 1 (PDK1) blockade triggers are well characterized in vitro metabolic alterations in cancer cells, including reduced glycolysis and increased glucose oxidation. Here, by gene expression profiling and digital pathology-mediated quantification of in situ markers in tumors, we investigated effects of PDK1 silencing on growth, angiogenesis and metabolic features of tumor xenografts formed by highly glycolytic OC316 and OVCAR3 ovarian cancer cells. Notably, at variance with the moderate antiproliferative effects observed in vitro, we found a dramatic negative impact of PDK1 silencing on tumor growth.

View Article and Find Full Text PDF

Metabolic profiling of cancer is a rising interest in the field of biomarker development. One bottleneck of its clinical exploitation, however, is the lack of simple and quantitative techniques that enable to capture the key metabolic traits of tumor from archival samples. In fact, liquid chromatography associated with mass spectrometry is the gold-standard technique for the study of tumor metabolism because it has high levels of accuracy and precision.

View Article and Find Full Text PDF

Purpose: Preclinical studies show that antiangiogenic therapy exacerbates tumor glycolysis and activates liver kinase B1/AMP kinase (AMPK), a pathway involved in the regulation of tumor metabolism. We investigated whether certain metabolism-related biomarkers could predict benefit to regorafenib in the phase II randomized REGOMA trial.

Patients And Methods: IHC and digital pathology analysis were used to investigate the expression in glioblastoma (GBM) sections of monocarboxylate transporter 1 and 4 (MCT1 and MCT4), associated with OXPHOS and glycolysis, respectively, phosphorylated AMPK (pAMPK), and phosphorylated acetyl-CoA carboxylase (pACC), a canonical target of AMPK activity.

View Article and Find Full Text PDF

Background: Liquid biopsy has the potential to monitor biological effects of treatment. KRAS represents the most commonly mutated oncogene in Caucasian non-small-cell lung cancer (NSCLC). The aim of this study was to explore association of dynamic plasma KRAS genotyping with outcome in advanced NSCLC patients.

View Article and Find Full Text PDF

Anti-angiogenic therapy triggers metabolic alterations in experimental and human tumors, the best characterized being exacerbated glycolysis and lactate production. By using both Liquid Chromatography-Mass Spectrometry (LC-MS) and Nuclear Magnetic Resonance (NMR) analysis, we found that treatment of ovarian cancer xenografts with the anti-Vascular Endothelial Growth Factor (VEGF) neutralizing antibody bevacizumab caused marked alterations of the tumor lipidomic profile, including increased levels of triacylglycerols and reduced saturation of lipid chains. Moreover, transcriptome analysis uncovered up-regulation of pathways involved in lipid metabolism.

View Article and Find Full Text PDF

Background: Epithelial ovarian cancer is the most lethal gynecological cancer and the high mortality is due to the frequent presentation at advanced stage, and to primary or acquired resistance to platinum-based therapy.

Methods: We developed three new models of ovarian cancer patient-derived xenografts (ovarian PDXs) resistant to cisplatin (cDDP) after multiple drug treatments. By different and complementary approaches based on integrated metabolomics (both targeted and untargeted mass spectrometry-based techniques), gene expression, and functional assays (Seahorse technology) we analyzed and compared the tumor metabolic profile in each sensitive and their corresponding cDDP-resistant PDXs.

View Article and Find Full Text PDF