Aims: Alveolar hypoxia acutely elicits contraction of pulmonary arteries, leading to a rise in pulmonary arterial pressure (PAP) and shifting blood to better ventilated areas of the lung. The molecular mechanisms underlying this hypoxic pulmonary vasoconstriction (HPV) are still incompletely understood. Here, we investigated the role of succinate dehydrogenase (SDH; synonymous to mitochondrial complex II) in HPV, with particular emphasis on regional differences along the vascular bed and consequences for PAP and perfusion-to-ventilation matching, using mutant mice heterozygous for the SDHD subunit of complex II (SDHD(+/-)).
View Article and Find Full Text PDFα-Keto acids (α-KAs) are not just metabolic intermediates but are also powerful modulators of different cellular pathways. Here, we tested the hypothesis that α-KA concentrations are regulated by complex II (succinate dehydrogenase=SDH), which represents an intersection between the mitochondrial respiratory chain for which an important function in cardiopulmonary oxygen sensing has been demonstrated, and the Krebs cycle, a central element of α-KA metabolism. SDH subunit D heterozygous (SDHD(+/-)) and wild-type (WT) mice were housed at normoxia or hypoxia (10% O(2)) for 4 days or 3 weeks, and right ventricular pressure, right ventricle/(left ventricle+septum) ratio, cardiomyocyte ultrastructure, pulmonary vascular remodelling, ventricular complex II subunit expression, SDH activity and α-KA concentrations were analysed.
View Article and Find Full Text PDF