Publications by authors named "Martina Spiljar"

Neuroinflammatory conditions such as multiple sclerosis (MS) are initiated by pathogenic immune cells invading the central nervous system (CNS). Autoreactive CD4 T helper cells are critical players that orchestrate the immune response both in MS and in other neuroinflammatory autoimmune diseases including animal models that have been developed for MS. T helper cells are classically categorized into different subsets, but heterogeneity exists within these subsets.

View Article and Find Full Text PDF

Thermal adaptation is an extensively used intervention for enhancing or suppressing thermogenic and mitochondrial activity in adipose tissues. As such, it has been suggested as a potential lifestyle intervention for body weight maintenance. While the metabolic consequences of thermal acclimation are not limited to the adipose tissues, the impact on the rest of the tissues in context of their gene expression profile remains unclear.

View Article and Find Full Text PDF

Intestinal surface changes in size and function, but what propels these alterations and what are their metabolic consequences is unknown. Here we report that the food amount is a positive determinant of the gut surface area contributing to an increased absorptive function, reversible by reducing daily food. While several upregulated intestinal energetic pathways are dispensable, the intestinal PPARα is instead necessary for the genetic and environment overeating-induced increase of the gut absorptive capacity.

View Article and Find Full Text PDF

Background: Body weight (BW) loss is prevalent in patients with pancreatic cancer (PC). Gut microbiota affects BW and is known to directly shape the host immune responses and antitumor immunity. This pilot study evaluated the link between gut microbiota, metabolic parameters and inflammatory/immune parameters, through the fecal material transplantation (FMT) of PC patients and healthy volunteers into germ-free (GF) mice.

View Article and Find Full Text PDF

Autoimmunity is energetically costly, but the impact of a metabolically active state on immunity and immune-mediated diseases is unclear. Ly6C monocytes are key effectors in CNS autoimmunity with an elusive role in priming naive autoreactive T cells. Here, we provide unbiased analysis of the immune changes in various compartments during cold exposure and show that this energetically costly stimulus markedly ameliorates active experimental autoimmune encephalomyelitis (EAE).

View Article and Find Full Text PDF

Osteoporosis is the most prevalent metabolic bone disease, characterized by low bone mass and microarchitectural deterioration. Here, we show that warmth exposure (34°C) protects against ovariectomy-induced bone loss by increasing trabecular bone volume, connectivity density, and thickness, leading to improved biomechanical bone strength in adult female, as well as in young male mice. Transplantation of the warm-adapted microbiota phenocopies the warmth-induced bone effects.

View Article and Find Full Text PDF

The gut microbiota is essential for the development and regulation of the immune system and the metabolism of the host. Germ-free animals have altered immunity with increased susceptibility to immunologic diseases and show metabolic alterations. Here, we focus on two of the major immune-mediated microbiota-influenced components that signal far beyond their local environment.

View Article and Find Full Text PDF

Immunotherapy approaches currently make their way into the clinics to improve the outcome of standard radiochemotherapy (RCT). The programed cell death receptor ligand 1 (PD-L1) is one possible target that, upon blockade, allows T cell-dependent antitumor immune responses to be executed. To date, it is unclear which RCT protocol and which fractionation scheme leads to increased PD-L1 expression and thereby renders blockade of this immune suppressive pathway reasonable.

View Article and Find Full Text PDF