Publications by authors named "Martina Salzano de Luna"

Viscoelastic relaxation measurements on styrene-butadiene rubbers (SBRs) doped with carbon nanotube (CNT) at different concentrations around the sol-gel transition show the time-temperature superposition (TTS). This process is described in terms of the mode coupling theory (MCT) approach to viscoelasticity by considering the frequency behavior of the loss modulus E″(ω) and showing that the corresponding TTS is linked to ω1/2 decay. From the analysis of the obtained data, we observe that the interaction between SBRs and CNT determines different levels of decay according to their concentration.

View Article and Find Full Text PDF

Mechanomimetic materials are particularly attractive for modeling in vitro fibroblast to myofibroblast (Myof) transition, a key process in the physiological repair of damaged tissue, and recognized as the core cellular mechanism of pathological fibrosis in different organs. In vivo, mechanical stimuli from the extracellular matrix (ECM) are crucial, together with cell-cell contacts and the pro-fibrotic transforming growth factor (TGF)-β1, in promoting fibroblast differentiation. Here, we explore the impact of hydrogels made by polyacrylamide with different composition on fibroblast behavior.

View Article and Find Full Text PDF

Phase behavior modulation of liquid crystalline molecules can be addressed by structural modification at molecular level. Starting from a rigid rod-like core reduction of the symmetry or increase of the steric hindrance by different substituents generally reduces the clearing temperature. Similar approaches can be explored to modulate the properties of liquid crystalline networks (LCNs)-shape-changing materials employed as actuators in many fields.

View Article and Find Full Text PDF

Interactions between nanoparticles (NPs) determine their self-organization and dynamic processes. In these systems, a quantitative description of the interparticle forces is complicated by the presence of the hydrophobic effect (HE), treatable only qualitatively, and due to the competition between the hydrophobic and hydrophilic forces. Recently, instead, a sort of crossover of HE from hydrophilic to hydrophobic has been experimentally observed on a local scale, by increasing the temperature, in pure confined water and studying the occurrence of this crossover in different water-methanol solutions.

View Article and Find Full Text PDF

Due to a very low mixing entropy, most of the polymer pairs are immiscible. As a result, mixing polymers of different natures in a typical mechanical recycling process leads to materials with multiple interfaces and scarce interfacial adhesion and, consequently, with unacceptably low mechanical properties. Adding nanoparticles to multiphase polymeric matrices represents a viable route to mitigate this drawback of recycled plastics.

View Article and Find Full Text PDF

In the recent years a considerable effort has been devoted to foster the understanding of the basic mechanisms underlying the dynamical arrest that is involved in glass forming in supercooled liquids and in the sol-gel transition. The elucidation of the nature of such processes represents one of the most challenging unsolved problems in the field of material science. In this context, two important theories have contributed significantly to the interpretation of these phenomena: the Mode-Coupling theory (MCT) and the Percolation theory (PT).

View Article and Find Full Text PDF

Chitosan (CS) is largely employed in environmental applications as an adsorbent of anionic dyes, due to the presence in its chemical structure of amine groups that, if protonated, act as adsorbing sites for negatively charged molecules. Efficient adsorption of both cationic and anionic dyes is thus not achievable with a pristine chitosan adsorbent, but it requires the combination of two or more components. Here, we show that simultaneous adsorption of cationic and anionic dyes can be obtained by embedding Linde Type A (LTA) zeolite particles in a crosslinked CS-based aerogel.

View Article and Find Full Text PDF

Organic dyes are extensively used in many industrial sectors, and their uncontrolled disposal into wastewaters raises serious concerns for environmental and human health. Due to the large variety of such pollutants, an effective remediation strategy should be characterized by a broad-spectrum efficacy. A promising strategy is represented by the combination of different adsorbent materials with complementary functionalities to develop composite materials that are expected to remove different contaminants.

View Article and Find Full Text PDF

The constant increase of CO concentration in the atmosphere is recognized worldwide to severely impact the environment and human health. Zeolites possess a high adsorption capacity for CO removal, but their powdery form prevents their use in many practical applications. When binding agents are used, a partial occlusion of the porosity can severely compromise the adsorption capacity.

View Article and Find Full Text PDF

The reduced graphene oxide (rGO) modified natural rubber composite (NR) filled with high contents of silica was prepared by a wet compounding and latex mixing process using a novel interface modifier cystamine dihydrochloride (CDHC) with coagulation ability. CDHC acts as a coagulation agent through electrostatic interaction with rGO, SiO, and latex rubber particles during the latex-based preparation process, while in the obtained silica/graphene/natural rubber composites, CDHC acts as an interface modifier. Compared with the composites prepared by the conventional mechanical mixing method, the dispersion of both rGO and SiO in the composites made by a wet compounding and latex mixing process is improved.

View Article and Find Full Text PDF

Liquid water is considered to be a peculiar example of glass forming materials because of the possibility of giving rise to amorphous phases with different densities and of the thermodynamic anomalies that characterize its supercooled liquid phase. In the present work, literature data on the density of bulk liquid water are analyzed in a wide temperature-pressure range, also including the glass phases. A careful data analysis, which was performed on different density isobars, made in terms of thermodynamic response functions, like the thermal expansion αP and the specific heat differences CP-CV, proves, exclusively from the experimental data, the thermodynamic consistence of the liquid-liquid transition hypothesis.

View Article and Find Full Text PDF

Hypothesis: Multi-component supramolecular hydrogels are gaining increasing interest as stimuli-responsive materials. To fully understand and possibly exploit the potential of such complex systems, the hierarchical structure of the gel network needs in-depth investigations across multiple length scales. We show that a thorough structural and rheological study represents a crucial pillar for the exploitation of this class of functional materials.

View Article and Find Full Text PDF

The photodegradation kinetics of 2-mercaptobenzothiazole (MBT), a corrosion inhibitor for copper-based alloys, is studied in high amorphous polyvinyl alcohol coatings subjected to either UV irradiation or indoor light exposure. The photodegradation process proceeds rapidly, thus compromising the anticorrosion ability of the coating. The encapsulation of MBT into layered double hydroxide (LDH) nanocarriers slows down its decomposition kinetics by a factor of three.

View Article and Find Full Text PDF

The removal of dye and toxic ionic pollutants from water is an extremely important issue that requires systematic and efficient adsorbent preparation strategies. To address this challenge, we developed composite chitosan (CS)-based hydrogels containing hyper-crosslinked polymer (HCP) particles to be used as broad-spectrum adsorbents. The goal is to efficiently combine the dye adsorption ability of chitosan and the capacity of the porous particles of trapping pollutant molecules.

View Article and Find Full Text PDF

The addition of nanoparticles has recently emerged as a clever tool to manipulate the microstructure and, through it, the macroscopic properties of immiscible polymer blends. Despite the huge number of studies in this field, the underlying mechanisms of most of the nanoparticle-induced effects on the blend microstructure remain poorly understood. Among others, the origin of effect of nanoparticles on the transition from distributed (drop-in-matrix) to co-continuous morphology is still controversial.

View Article and Find Full Text PDF

The assembly of lamellar (clay) nanoparticles in a blend of polystyrene (PS) and poly(methyl methacrylate) (PMMA) with drop-matrix morphology is studied combining viscoelastic measurements and morphological analyses. A reference system based on pure PS is used to highlight the effect on the assembly process of the presence of liquid interfaces where the particles are inclined to gather. The filler content is varied in a wide range to cover all the possible structures, from isolated flocs up to space-spanning networks.

View Article and Find Full Text PDF