In an attempt to prepare a library of short oligoadenylate analogues featuring both the enzyme-stable internucleotide linkage and the 5'-O-methylphosphonate moiety and thus obtain a pool of potential RNase L agonists/antagonists, we studied the spontaneous polycondensation of the adenosin-5'-O-ylmethylphosphonic acid (p(c)A), an isopolar AMP analogue, and its imidazolide derivatives employing N,N'-dicyclohexylcarbodiimide under nonaqueous conditions and uranyl ions under aqueous conditions, respectively. The RP LC-MS analyses of the reaction mixtures per se, and those obtained after the periodate treatment, along with analyses and separations by capillary zone electrophoresis, allowed us to characterize major linear and cyclic oligoadenylates obtained. The structure of selected compounds was supported, after their isolation, by NMR spectroscopy.
View Article and Find Full Text PDFTo determine the influence of methylene group insertion in the internucleotide linkage on the binding process of 2',5'-oligoadenylates to RNase L, a series of 2'-phosphonate-modified trimers and tetramers were synthesized from appropriate monomeric units and evaluated for their ability to bind to murine RNase L. Tetramers pAAXA modified by ribo-, arabino-, or xylo-2'-phosphonate unit X in the third position were capable of binding to RNase L in nanomolar concentrations. The replacement of the first residue (pXAAA), or both the first and the third residues (pXAXA), was also tolerated by the enzyme.
View Article and Find Full Text PDFNucleosides Nucleotides Nucleic Acids
December 2003
This work deals with isopolar, phosphonate-based nucleotide analogues containing a bridging P-C bond instead of the ester P-O linkage. Specifically, starting from activated derivatives 1, 2, and 3, a simple process for preparation of mixtures of short oligomers and their analyses were elaborated.
View Article and Find Full Text PDF