Publications by authors named "Martina Picmanova"

With the growing global population and climate change, achieving food security is a pressing challenge. Vertical farming has the potential to support local food production and security. As a Total Controlled Environment Agriculture (TCEA) system, vertical farming employs LED lighting which offers opportunities to modulate light spectrum and intensity, and thus can be used to influence plant growth and phytochemical composition, including antioxidants beneficial for human health.

View Article and Find Full Text PDF

Introduction: Recent advances in high-throughput methodologies in the 'omics' and synthetic biology fields call for rapid and sensitive workflows in the metabolic phenotyping of complex biological samples.

Objective: The objective of this research was to evaluate a straightforward to implement LC-MS metabolomics method using a commercially available chromatography column that provides increased throughput. Reducing run time can potentially impact chromatography and therefore the effects of ion mobility spectrometry to expand peak capacity were also evaluated.

View Article and Find Full Text PDF

Certain transglucanases can covalently graft cellulose and mixed-linkage β-glucan (MLG) as donor substrates onto xyloglucan as acceptor substrate and thus exhibit cellulose:xyloglucan endotransglucosylase (CXE) and MLG:xyloglucan endotransglucosylase (MXE) activities in vivo and in vitro. However, missing information on factors that stimulate or inhibit these hetero-transglucosylation reactions limits our insight into their biological functions. To explore factors that influence hetero-transglucosylation, we studied Equisetum fluviatile hetero-trans-β-glucanase (EfHTG), which exhibits both CXE and MXE activity, exceeding its xyloglucan:xyloglucan homo-transglucosylation (XET) activity.

View Article and Find Full Text PDF

Lima bean, , is a crop legume that produces the cyanogenic glucosides linamarin and lotaustralin. In the legumes and , the biosynthesis of these two α-hydroxynitrile glucosides involves cytochrome P450 enzymes of the CYP79 and CYP736 families and a UDP-glucosyltransferase. Here, we identify CYP79D71 as the first enzyme of the pathway in , producing oximes from valine and isoleucine.

View Article and Find Full Text PDF

Current cell-wall models assume no covalent bonding between cellulose and hemicelluloses such as xyloglucan or mixed-linkage β-d-glucan (MLG). However, Equisetum hetero-trans-β-glucanase (HTG) grafts cellulose onto xyloglucan oligosaccharides (XGOs) - and, we now show, xyloglucan polysaccharide - in vitro, thus exhibiting CXE (cellulose:xyloglucan endotransglucosylase) activity. In addition, HTG also catalyzes MLG-to-XGO bonding (MXE activity).

View Article and Find Full Text PDF

Auxin is a key plant regulatory molecule, which acts upon a plethora of cellular processes, including those related to cell differentiation and elongation. Despite the stunning progress in all disciplines of auxin research, the mechanisms of auxin-mediated rapid promotion of cell expansion and underlying rearrangement of cell wall components are poorly understood. This is partly due to the limitations of current methodologies for probing auxin.

View Article and Find Full Text PDF

Almond and sweet cherry are two economically important species of the genus. They both produce the cyanogenic glucosides prunasin and amygdalin. As part of a two-component defense system, prunasin and amygdalin release toxic hydrogen cyanide upon cell disruption.

View Article and Find Full Text PDF

The lack of robust, high-throughput, and sensitive analytical strategies that can conclusively map the structure of glycans has significantly hampered progress in fundamental and applied aspects of glycoscience. Resolution of the anomeric α/β glycan linkage within oligosaccharides remains a particular challenge. Here, we show that "memory" of anomeric configuration is retained following gas-phase glycosidic bond fragmentation during tandem mass spectrometry (MS).

View Article and Find Full Text PDF

Background: The important cereal crop Sorghum bicolor (L.) Moench biosynthesize and accumulate the defensive compound dhurrin during development. Previous work has suggested multiple roles for the compound including a function as nitrogen storage/buffer.

View Article and Find Full Text PDF

Apiose is a unique branched-chain pentose found principally in plants. It is a key component of structurally complex cell wall polysaccharides, as well as being present in a large number of naturally occurring secondary metabolites. This review provides a comprehensive overview of the current state of knowledge on the metabolism and natural occurrence of apiose, using cyanogenic glycosides and their related compounds as a case study.

View Article and Find Full Text PDF
Article Synopsis
  • The lotus plant, Lotus japonicus, produces hydroxynitrile glucoside (HNG) compounds that can release toxic hydrogen cyanide when damaged, functioning as a defense against herbivores.
  • BGD2 is the main enzyme that activates these toxic compounds in leaves, while an alternative enzyme called BGD3 plays a crucial role in floral cyanogenesis, particularly in specific floral tissues.
  • The study also highlights that L. japonicus flowers contain HNGs and their diglycosides in nectar, suggesting a balance between attracting pollinators and defending against herbivores in the plant's reproductive structures.
View Article and Find Full Text PDF

Cyanogenic glycosides are phytoanticipins involved in plant defence against herbivores by virtue of their ability to release toxic hydrogen cyanide (HCN) upon tissue disruption. In addition, endogenous turnover of cyanogenic glycosides without the liberation of HCN may offer plants an important source of reduced nitrogen at specific developmental stages. To investigate the presence of putative turnover products of cyanogenic glycosides, comparative metabolic profiling using LC-MS/MS and high resolution MS (HR-MS) complemented by ion-mobility MS was carried out in three cyanogenic plant species: cassava, almond and sorghum.

View Article and Find Full Text PDF

Escherichia coli strains expressing different nitrilases transformed nitriles or KCN. Six nitrilases (from Aspergillus niger (2), A. oryzae, Neurospora crassa, Arthroderma benhamiae, and Nectria haematococca) were arylacetonitrilases, two enzymes (from A.

View Article and Find Full Text PDF

Background: The expression of genes in Corynebacterium glutamicum, a Gram-positive non-pathogenic bacterium used mainly for the industrial production of amino acids, is regulated by seven different sigma factors of RNA polymerase, including the stress-responsive ECF-sigma factor SigH. The sigH gene is located in a gene cluster together with the rshA gene, putatively encoding an anti-sigma factor. The aim of this study was to analyze the transcriptional regulation of the sigH and rshA gene cluster and the effects of RshA on the SigH regulon, in order to refine the model describing the role of SigH and RshA during stress response.

View Article and Find Full Text PDF

The aim of this work was to determine the ability of rhodococci to transform 3,5-dichloro-4-hydroxybenzonitrile (chloroxynil), 3,5-dibromo-4-hydroxybenzonitrile (bromoxynil), 3,5-diiodo-4-hydroxybenzonitrile (ioxynil) and 2,6-dichlorobenzonitrile (dichlobenil); to identify the products and determine their acute toxicities. Rhodococcus erythropolis A4 and Rhodococcus rhodochrous PA-34 converted benzonitrile herbicides into amides, but only the former strain was able to hydrolyze 2,6-dichlorobenzamide into 2,6-dichlorobenzoic acid, and produced also more of the carboxylic acids from the other herbicides compared to strain PA-34. Transformation of nitriles into amides decreased acute toxicities for chloroxynil and dichlobenil, but increased them for bromoxynil and ioxynil.

View Article and Find Full Text PDF