Introduction: Dermatofluoroscopy is an optical non-invasive method of melanoma/nevus differentiation that has shown 89% sensitivity and 45% specificity in clinical trials, but long measurement duration hinders clinical use. An intelligent algorithm was developed to shorten the measurement time without compromising its diagnostic accuracy. It uses dermoscopic images of the skin lesions to be measured to select measurement points based on the assessment of color values.
View Article and Find Full Text PDFSkin Pharmacol Physiol
November 2024
Background Human life is based on oxygen respiration and an enzymatic, free radical-dependent water chemistry, whose billions of parallel reactions take place at pH ∼7.4 and a temperature of 37°C, in accordance with the laws of chemistry. The cellular metabolic processes occur over time periods covered by the half-lives of ROS (reactive oxygen species) for °OH to over 10 s for LOS (lipid oxygen species), indicating that mixtures of free radicals form the basic components for these processes.
View Article and Find Full Text PDFCold atmospheric plasma (CAP) enables painless tissue treatment by producing reactive species including excited molecules and charged particles and is of great interest for medical applications. Medical CAP sources work in contact with air at ambient pressure, resulting in the generation of substantial amounts of reactive oxygen and nitrogen radicals. These radicals have a significant influence on cellular biochemistry, are crucial components of the immune system, and play a central role in wound therapy.
View Article and Find Full Text PDFDissolvable microneedles (DMNs), fabricated from biocompatible materials that dissolve in both water and skin have gained popularity in dermatology. However, limited research exists on their application in compromised skin conditions. This study compares the hyaluronic acid-based DMNs penetration, formation of microchannels, dissolution, and diffusion kinetics in intact, barrier-disrupted (tape stripped), and dry (acetone-treated) porcine ear skin ex vivo.
View Article and Find Full Text PDFMelanin, the most abundant skin chromophore, is produced by melanocytes and is one of the key components responsible for mediating the skin's response to ultraviolet radiation (UVR). Because of its antioxidant, radical scavenging, and broadband UV absorbing properties, melanin reduces the penetration of UVR into the nuclei of keratinocytes. Despite its long-established photoprotective role, there is evidence that melanin may also induce oxidative DNA damage in keratinocytes after UV exposure and therefore be involved in the development of melanoma.
View Article and Find Full Text PDFThe concentration of air pollution is gradually increasing every year so that daily skin exposure is unavoidable. Dietary supplements and topical formulations currently represent the protective strategies to guard against the effects of air pollution on the body and the skin. Unfortunately, there are not yet enough methods available to measure the effectiveness of anti-pollution products on skin.
View Article and Find Full Text PDFExcessive exposure to ultraviolet (UV) light leads to acute and chronic UV damage and is the main risk factor for the development of skin cancer. In most countries with western lifestyle, the topical application of sunscreens on UV-exposed skin areas is by far the most frequently used preventive measure against sunburn. Further than preventing sunburns, increasing numbers of consumers are appreciating sunscreens with a medium- to high-level sun protective factor (SPF) as basis for sustainable-skin ageing or skin cancer prevention programs.
View Article and Find Full Text PDFThe inactivation of multi resistant pathogens is an important clinical need. One approach is UV-C irradiation, which was previously not possible in vivo due to cytotoxicity. Recently, far UV-C irradiation at λ < 240 nm was successfully used on skin with negligible damage.
View Article and Find Full Text PDFAtopic dermatitis (AD)/atopic eczema is a chronic relapsing inflammatory skin disease affecting nearly 14% of the adult population. An important pathogenetic pillar in AD is the disrupted skin barrier function (SBF). The atopic stratum corneum (SC) has been examined using several methods, including Raman microspectroscopy, yet so far, there is no depth-dependent analysis over the entire SC thickness.
View Article and Find Full Text PDFThe growing threat of multi-drug resistant pathogens and airborne microbial diseases has highlighted the need to improve or develop novel disinfection methods for clinical environments. Conventional ultraviolet C (UV-C) lamps effectively inactivate microorganisms but are harmful to human skin and eyes upon exposure. The use of new 233 nm far UV-C LEDs as an antiseptic can overcome those limitations.
View Article and Find Full Text PDFFar-UVC radiation sources of wavelengths 222 nm and 233 nm represent an interesting potential alternative for the antiseptic treatment of the skin due to their high skin compatibility. Nevertheless, no studies on far-UVC-induced DNA damage in different skin types have been published to date, which this study aims for. After irradiating the skin with far-UVC of the wavelengths 222 and 233 nm as well as broadband UVB, the tissue was screened for cyclobutane pyrimidine dimer-positive (CPD ) cells using immunohistochemistry.
View Article and Find Full Text PDFPsoriasis, one of the most common skin diseases affecting roughly 2%-3% of the world population, is associated with a reduced skin barrier function (SBF) that might play an important role in its pathophysiology. The SBF is provided primarily by the stratum corneum (SC) of the skin. Previous studies have revealed a higher trans-epidermal water loss, lower hydration, abnormal concentration and composition of intercellular lipids, as well as alterations in secondary keratin structure in the psoriatic SC.
View Article and Find Full Text PDFThe application of a far-ultraviolet C (UVC) light emitting diode (LED) of 233 nm showed significant bactericidal efficacy at an applied dose between 20 and 80 mJ cm as reported recently. In addition, only minor epidermal DNA lesions were observed in ex vivo human skin and in vitro epidermal models <10% of the minimal erythema dose of UVB radiation. To broaden the potential range of applications of such systems, e.
View Article and Find Full Text PDFAir pollution is increasing worldwide and skin is exposed to high levels of pollution daily, causing oxidative stress and other negative consequences. The methods used to determine oxidative stress in the skin are invasive and non-invasive label-free in vivo methods, which are severely limited. Here, a non-invasive and label-free method to determine the effect of cigarette smoke (CS) exposure on skin ex vivo (porcine) and in vivo (human) was established.
View Article and Find Full Text PDFMachine learning is transforming the field of histopathology. Especially in classification related tasks, there have been many successful applications of deep learning already. Yet, in tasks that rely on regression and many niche applications, the domain lacks cohesive procedures that are adapted to the learning processes of neural networks.
View Article and Find Full Text PDFThe presence of mechanoreceptors in glabrous skin allows humans to discriminate textures by touch. The amount and distribution of these receptors defines our tactile sensitivity and can be affected by diseases such as diabetes, HIV-related pathologies, and hereditary neuropathies. The quantification of mechanoreceptors as clinical markers by biopsy is an invasive method of diagnosis.
View Article and Find Full Text PDFGlabrous skin is hair-free skin with a high density of sweat glands, which is found on the palms, and soles of mammalians, covered with a thick stratum corneum. Dry hands are often an occupational problem which deserves attention from dermatologists. Urea is found in the skin as a component of the natural moisturizing factor and of sweat.
View Article and Find Full Text PDFAntioxidants exhibit a powerful defense mechanism against aging and chronic disease. The human skin reflects the overall antioxidant status of the body. The cutaneous carotenoid concentration is a biomarker for individual nutritional intake of antioxidants, as it correlates with the overall antioxidant status.
View Article and Find Full Text PDFHair follicles constitute important drug delivery targets for skin antisepsis since they contain ≈25% of the skin microbiome. Nanoparticles are known to penetrate deeply into hair follicles. By massaging the skin, the follicular penetration process is enhanced based on a ratchet effect.
View Article and Find Full Text PDFBackground: The knowledge about the location and kinetics of tattoo pigments in human skin after application and during the recovery is restricted due to the limitation of in vivo methods for visualizing pigments. Here, the localization and distribution of tattoo ink pigments in freshly and old tattooed human skin during the regeneration of the epidermis and dermis were investigated in vivo.
Methods: Two-photon excited fluorescence lifetime imaging (TPE-FLIM) was used to identify tattoo ink pigments in human skin in vivo down to the reticular dermis.
Oxidative stress as a driver of disease is reinforcing the trend towards supplementation with antioxidants. While antioxidants positively influence the redox status when applied at physiological doses, higher concentrations may have pro-oxidative effects. Precise assessment methods for testing the supply of antioxidants are lacking.
View Article and Find Full Text PDFHealth problems associated with the amount of air pollutants are increasing worldwide. Pollution damages not only the lungs; it also has an impact on skin health and is co-responsible for the development of skin diseases. Anti-pollution products are on the rise in the cosmetic market but so far, there is no established method to directly assess the impact of pollution on the skin and to test the efficacy of anti-pollution products.
View Article and Find Full Text PDFMacrophages (ΜΦs) are important immune effector cells that promote (M1 ΜΦs) or inhibit (M2 ΜΦs) inflammation and are involved in numerous physiological and pathogenic immune responses. Their precise role and relevance, however, are not fully understood for lack of noninvasive quantification methods. Here, we show that two-photon excited fluorescence lifetime imaging (TPE-FLIM), a label-free noninvasive method, can visualize ΜΦs in the human dermis in vivo.
View Article and Find Full Text PDF