Due to the emerging biomedical relevance and technological potential of fungal melanins, and prompted by the virtual lack of information about their structural arrangement, an optimized synthetic protocol has been devised for a potential structural model of Ascomyces allomelanin through enzyme-catalyzed oxidative polymerization of 1,8-dihydroxynaphthalene (1,8-DHN). Electrospray ionization mass spectrometry (ESI-MS) measurements of freshly synthesized DHN-polymer recorded in the negative ion mode allowed detection of oligomers up to m/z 4000, separated by 158 Da, corresponding to the in-chain DHN-unit. The dominant peaks were assigned to singly-charged distribution, up to 23 repeating units, whereas a doubly charged polymer distribution was also detectable.
View Article and Find Full Text PDFPEG-based ionic liquids are a new appealing group of solvents making the link between two distinct but very similar fluids: ionic liquids and poly(ethylene glycol)s. They find applications across a range of innumerable disciplines in science, technology, and engineering. In the last years, the possibility to use these as alternative solvents for organic synthesis and catalysis has been increasingly explored.
View Article and Find Full Text PDF