Publications by authors named "Martina Marchetti-Deschmann"

Manganese ion homeostasis is vital for bacteria and is achieved via manganese-dependent transcription factors. Manganese mediation of transcription factor attachment to the corresponding oligonucleotide sequences can be investigated, e.g.

View Article and Find Full Text PDF

The heterotrophic cultivation of extremophilic archaea still heavily relies on complex media. However, complex media are associated with unknown composition, high batch-to-batch variability, potential inhibiting and interfering components, as well as regulatory challenges, hampering advancements of extremophilic archaea in genetic engineering and bioprocessing. For Metallosphaera sedula, a widely studied organism for biomining and bioremediation and a potential production host for archaeal ether lipids, efforts to find defined cultivation conditions have still been unsuccessful.

View Article and Find Full Text PDF

Common B7 biodiesels consist of mixtures of mineral oil-based diesel and 7% fatty acid methyl ester (FAME). While biocontent increase can be achieved with these blends at high-quality levels during cold temperature periods, fuel filter blocking events are reported from time to time. Based on a preliminary study on fuel filters, the selection of compounds responsible for filter blocking could be narrowed down to saturated monoglycerides (SMGs).

View Article and Find Full Text PDF

Parkinson's disease (PD) associated state of neuroinflammation due to the aggregation of aberrant proteins is widely reported. One type of post-translational modification involved in protein stability is glycosylation. Here, we aimed to characterize the human Parkinsonian nigro-striatal -glycome, and related transcriptome/proteome, and its correlation with endoplasmic reticulum (ER) stress and unfolded protein response (UPR), providing a comprehensive characterization of the PD molecular signature.

View Article and Find Full Text PDF

Mycoparasitism is a key feature of Trichoderma (Hypocreales, Ascomycota) biocontrol agents. Recent studies of intracellular signal transduction pathways of the potent mycoparasite Trichoderma atroviride revealed the involvement of Tmk1, a mitogen-activated protein kinase (MAPK), in triggering the mycoparasitic response. We previously showed that mutants missing Tmk1 exhibit reduced mycoparasitic activity against several plant pathogenic fungi.

View Article and Find Full Text PDF

Many studies aim at maximizing fungal secondary metabolite production but the influence of light during cultivation has often been neglected. Here, we combined an untargeted isotope-assisted liquid chromatography-high-resolution mass spectrometry-based metabolomics approach with standardized cultivation of under three defined light regimes (darkness (PD), reduced light (RL) exposure, and 12/12 h light/dark cycle (LD)) to systematically determine the effect of light on secondary metabolite production. Comparative analyses revealed a similar metabolite profile upon cultivation in PD and RL, whereas LD treatment had an inhibiting effect on both the number and abundance of metabolites.

View Article and Find Full Text PDF

Collagen fibrils are the basic structural building blocks that provide mechanical properties such as stiffness, toughness, and strength to tissues from the nano- to the macroscale. Collagen fibrils are highly hydrated and transient deformation mechanisms contribute to their mechanical behavior. One approach to describe and quantify the apparent viscoelastic behavior of collagen fibrils is to find rheological models and fit the resulting empirical equations to experimental data.

View Article and Find Full Text PDF

Gas-phase electrophoresis on a nano-Electrospray Gas-phase Electrophoretic Mobility Molecular Analyzer (nES GEMMA) separates single-charged, native analytes according to the surface-dry particle size. A volatile electrolyte, often ammonium acetate, is a prerequisite for electrospraying. Over the years, nES GEMMA has demonstrated its unique capability to investigate (bio-)nanoparticle containing samples in respect to composition, analyte size, size distribution, and particle numbers.

View Article and Find Full Text PDF

From the moment of production, artworks are constantly exposed to changing environmental factors potentially inducing degradation. Therefore, detailed knowledge of natural degradation phenomena is essential for proper damage assessment and preservation. With special focus on written cultural heritage, we present a study on the degradation of sheep parchment employing accelerated aging with light (295-3000 nm) for one month, 30/50/80% relative humidity (RH) and 50 ppm sulfur dioxide with 30/50/80%RH for one week.

View Article and Find Full Text PDF

In the last years, LA-ICP-MS has become an attractive technique for analyzing solid samples from various research fields. However, application in material science is often hampered by the limited availability of appropriate certified reference materials, which are a precondition for accurate quantification. Thus, frequently in-house prepared standards are used, which match the sample's composition and include all elements of interest at the required concentration levels.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are in the scientific spotlight due to their potential application in the medical field, ranging from medical diagnosis to therapy. These applications rely on EV stability during isolation and purification-ideally, these steps should not impact vesicle integrity. In this context, we investigated EV stability and particle numbers via nano electrospray gas-phase electrophoretic mobility molecular analysis (nES GEMMA) and nanoparticle tracking analysis (NTA).

View Article and Find Full Text PDF
Article Synopsis
  • The study simulated a suspected forgery of a three-page real estate rental agreement to understand how much reliable information can be extracted from a single piece of evidence and to identify effective techniques for forgery detection.
  • Seventeen laboratories from sixteen countries were tasked with answering questions related to the document's printing techniques, paper consistency, staples, ink, and the age of the headings and signatures.
  • Various methods, including spectroscopic and imaging techniques, were assessed, revealing that no single method could completely solve all tasks, with correct results predominantly found in the discrimination of printer toners but errors occurring with ink distinctions.
View Article and Find Full Text PDF

Ochratoxin A (OTA) is one of the major mycotoxins causing severe effects on the health of humans and animals. Ochratoxin alpha (OTα) is a metabolite of OTA, which is produced through microbial or enzymatic hydrolysis, and one of the preferred routes of OTA detoxification. The methods described here are applicable for the extraction and quantification of OTA and OTα in several pig and poultry matrices such as feed, feces/excreta, urine, plasma, dried blood spots, and tissue samples such as liver, kidney, muscle, skin, and fat.

View Article and Find Full Text PDF

MALDI mass spectrometry imaging (MALDI MSI) is a powerful analytical method for achieving 2D localization of compounds from thin sections of typically but not exclusively biological samples. The dynamically harmonized ICR cell (ParaCell) was recently introduced to achieve extreme spectral resolution capable of providing the isotopic fine structure of ions detected in complex samples. The latest improvement in the ICR technology also includes 2ω detection, which significantly reduces the transient time while preserving the nominal mass resolving power of the ICR cell.

View Article and Find Full Text PDF

The properties of biogenic aerosol strongly depend on the particle's proteinaceous compounds. Proteins from primary biological aerosol particles (PBAPs) can cause allergic reactions in the human respiratory system or act as ice and condensation nuclei in clouds. Consequently, these particles have high impact on human health and climate.

View Article and Find Full Text PDF

The growing importance of fluoropolymers in high-tech applications and green technologies results in the rising need for their characterization. In contrast to conventional methods used for this task, laser-induced breakdown spectroscopy (LIBS) provides the advantage of a spatially resolved analysis. Nevertheless, the high excitation energy of fluorine results in low sensitivity of the atomic F(I) lines, which limits the feasibility of its LIBS-based analysis.

View Article and Find Full Text PDF

Although lipids are crucial molecules for cell structure, metabolism, and signaling in most organs, they have additional specific functions in the skin. Lipids are required for the maintenance and regulation of the epidermal barrier, physical properties of the skin, and defense against microbes. Analysis of the lipidome-the totality of lipids-is of similar complexity to those of proteomics or other omics, with lipid structures ranging from simple, linear, to highly complex structures.

View Article and Find Full Text PDF

Due to the fast growing importance of monoclonal antibodies in biomedical research, bioanalytics and human therapy, sensitive, fast and reliable methods are needed to monitor their production, target their characteristics, and for their final quality control. Application of a nano electrospray (nES) with soft X-ray radiation (SXR) based charge reduction and differential mobility analysis (DMA, aka nano electrospray gas-phase electrophoretic mobility molecular analysis, nES GEMMA) allows the size-separation and detection of macromolecules and (bio-)nanoparticles from a few nm up to several hundreds of nm in diameter in a native-like environment. The current study focuses on the analysis of a 148 kDa recombinant monoclonal antibody (rmAb) with the above mentioned instrumental setup and applying an universal detector, i.

View Article and Find Full Text PDF

ATG7: autophagy related 7; BODIPY: boron dipyrromethene; DAG: diacyl glycerides; DBI: diazepam binding inhibitor; GFP: green fluorescent protein; KRT14: keratin 14; HPLC-MS: high performance liquid chromatography-mass spectrometry; LD: lipid droplet; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MSI: mass spectrometric imaging; ORO: Oil Red O; PC: phosphatidylcholine; PE: phosphatidylethanolamine; PG: preputial gland; PLIN2: perilipin 2; PtdIns: phosphatidylinositol; PL: phospholipids; POPC: 1-palmitoyl-2-oleoyl-PC; PS: phosphatidylserine; qRT-PCR: quantitative reverse transcribed PCR; SG: sebaceous gland; scRNAseq: single-cell RNA sequencing; TAG: triacylglycerides; TLC: thin layer chromatography.

View Article and Find Full Text PDF

Determining the mode of action of microbial biocontrol agents plays a key role in their development and registration as commercial biopesticides. The biocontrol rhizobacterium AZ78 (AZ78) is able to inhibit a vast array of plant pathogenic oomycetes and Gram-positive bacteria due to the release of antimicrobial secondary metabolites. A combination of MALDI-qTOF-MSI and UHPLC-HRMS/M was applied to finely dissect the AZ78 metabolome and identify the main secondary metabolites involved in the inhibition of plant pathogenic microorganisms.

View Article and Find Full Text PDF

Gas-phase electrophoresis yields size distributions of polydisperse, aerosolized analytes based on electrophoretic principles. Nanometer-sized, surface-dry, single-charged particles are separated in a high laminar sheath flow of particle-free air and an orthogonal tunable electric field. Additionally, nano Electrospray Gas-Phase Electrophoretic Mobility Molecular Analyzer (nES GEMMA) data are particle-number based.

View Article and Find Full Text PDF

In this study, we have aimed at developing a novel electrochemical sensing approach capable of detecting dopamine, the main biomarker in Parkinson's disease, within the highly complex cell culture matrix of human midbrain organoids in a non-invasive and label-free manner. With its ability to generate organotypic structures in vitro, induced pluripotent stem cell technology has provided the basis for the development of advanced patient-derived disease models. These include models of the human midbrain, the affected region in the neurodegenerative disorder Parkinson's disease.

View Article and Find Full Text PDF

Lipids are highly diverse biomolecules crucial for the formation and function of cellular membranes, for metabolism, and for cellular signaling. In the mammalian skin, lipids additionally serve for the formation of the epidermal barrier and as surface lipids, together regulating permeability, physical properties, acidification and the antimicrobial defense. Recent advances in accuracy and specificity of mass spectrometry have allowed studying enzymatic and non-enzymatic modifications of lipids-the epilipidome-multiplying the known diversity of molecules in this class.

View Article and Find Full Text PDF

During aging, skin accumulates senescent cells. The transient presence of senescent cells, followed by their clearance by the immune system, is important in tissue repair and homeostasis. The persistence of senescent cells that evade clearance contributes to the age-related deterioration of the skin.

View Article and Find Full Text PDF

Whole IgG antivenoms are prepared from hyperimmune animal plasma by various refinement strategies. The ones most commonly used at industrial scale are precipitation by sodium or ammonium sulphate (ASP), and caprylic acid precipitation (CAP) of non-immunoglobulin proteins. The additional procedures, which have so far been used for experimental purposes only, are anion-exchange (AEX) and cation-exchange chromatography (CEX), as well as affinity chromatography (AC) using IgG's Fc-binding ligands.

View Article and Find Full Text PDF