Publications by authors named "Martina Malnar"

Article Synopsis
  • Niemann-Pick type C (NPC) is a rare lysosomal storage disorder that shares features with Alzheimer’s disease, particularly in the processing of amyloid precursor protein by the enzyme BACE1.
  • The study focused on analyzing the expression of BACE1 substrates Sez6, Sez6L, and APP in mouse brains at two different ages to observe changes associated with NPC and its progression.
  • Results revealed increased BACE1 cleavage of these substrates in NPC mice, indicating a potential trafficking defect in the endolysosomal pathway that may enhance proteolytic activity, which could inform therapeutic strategies for both NPC and Alzheimer's disease.
View Article and Find Full Text PDF

The β-lactam cholesterol absorption inhibitor ezetimibe is so far the only representative of this class of compounds on the market today. The goal of this work was to synthesize new amide ezetimibe analogs from trans-3-amino-(3R,4R)-β-lactam and to test their cytotoxicity and activity as cholesterol absorption inhibitors. We synthesized six new amide ezetimibe analogs.

View Article and Find Full Text PDF

Two new trans-(3R,4R)-amino-β-lactam derivatives and their diastereoisomeric mixtures were synthesized as ezetimibe bioisosteres and tested in in vitro and in vivo experiments as novel β-lactam cholesterol absorption inhibitors. Both compounds exhibited low cytotoxicity in MDCKII, hNPC1L1/MDCKII, and HepG2 cell lines and potent inhibitory effect in hNPC1L1/MDCKII cells. In addition, these compounds markedly reduced cholesterol absorption in mice, resulting in reduced cholesterol concentrations in plasma, liver, and intestine.

View Article and Find Full Text PDF

Alzheimer's disease (AD) and Niemann-Pick type C (NPC) disease are progressive neurodegenerative diseases with very different epidemiology and etiology. AD is a common cause of dementia with a complex polyfactorial etiology, including both genetic and environmental risk factors, while NPC is a very rare autosomal recessive disease. However, the diseases share some disease-related molecular pathways, including abnormal cholesterol metabolism, and involvement of amyloid-β (Aβ) and tau pathology.

View Article and Find Full Text PDF

Niemann-Pick type C disease (NPC) is an inherited disorder mainly caused by loss-of-function mutations in the NPC1 gene, that lead to intracellular cholesterol accumulation and disturbed cholesterol homeostasis. Similarly to Alzheimer's disease (AD), NPC is associated with progressive neurodegeneration and altered metabolism of amyloid precursor protein (APP). Liver X receptors (LXRs), the key transcriptional regulators of cholesterol homeostasis, were reported to play neuroprotective roles in NPC mice.

View Article and Find Full Text PDF

Förster resonance energy transfer (FRET) -based techniques have recently been applied to study the interactions between β-site APP-cleaving enzyme-GFP (BACE1-GFP) and amyloid precursor protein-mRFP (APP-mRFP) in U373 glioblastoma cells. In this context, the role of APP-BACE1 proximity in Alzheimer's disease (AD) pathogenesis has been discussed. FRET was found to depend on intracellular cholesterol levels and associated alterations in membrane stiffness.

View Article and Find Full Text PDF

Low levels of amyloid-beta42 (Abeta42) and high total-tau (t-tau) or phosphorylated-tau (p181-tau) levels in cerebrospinal fluid (CSF) were shown to be characteristic for Alzheimer's disease (AD) patients and for mildly cognitively impaired (MCI) or non-demented individuals who will progress to AD. The goal of this study was to evaluate the benefit of CSF biomarker testing in a setting with no specialized dementia centers, in order to improve the accuracy of AD diagnosis and to identify individuals with incipient AD. Using ELISA assay we analyzed CSF Abeta42, t-tau and p181-tau levels among clinically diagnosed non-demented individuals, AD patients and individuals with uncertain dementia (n=36).

View Article and Find Full Text PDF

Niemann-Pick type C (NPC) is a progressive neurodegenerative lysosomal disease with altered cellular lipid trafficking. The metabolism of amyloid-β (Aβ) - previously mainly studied in Alzheimer's disease - has been suggested to be altered in NPC. Here we aimed to perform a detailed characterization of metabolic products from the amyloid precursor protein (APP) in NPC models and patients.

View Article and Find Full Text PDF

Cholesterol accumulation in Niemann-Pick type C disease (NPC) causes increased levels of the amyloid-precursor-protein C-terminal fragments (APP-CTFs) and intracellular amyloid-β peptide (Aβ), the two central molecules in Alzheimer's disease (AD) pathogenesis. We previously reported that cholesterol accumulation in NPC-cells leads to cholesterol-dependent increased APP processing by β-secretase (BACE1) and decreased APP expression at the cell surface (Malnar et al. Biochim Biophys Acta.

View Article and Find Full Text PDF

Familial Alzheimer's disease (AD) due to PSEN1 mutations provides an opportunity to examine AD biomarkers in persons in whom the diagnosis is certain. We describe a 55 year-old woman with clinically probable AD and a novel PSEN1 mutation who underwent genetic, clinical, biochemical and magnetic resonance and nuclear imaging assessments. We also describe neuropathological findings in her similarly affected brother.

View Article and Find Full Text PDF

The link between cholesterol and Alzheimer's disease has recently been revealed in Niemann-Pick type C disease. We found that NPC1(-/-) cells show decreased expression of APP at the cell surface and increased processing of APP through the beta-secretase pathway resulting in increased C99, sAPPbeta and intracellular Abeta40 levels. This effect is dependent on increased cholesterol levels, since cholesterol depletion reversed cell surface APP expression and lowered Abeta/C99 levels in NPC1(-)(/)(-) cells to the levels observed in wt cells.

View Article and Find Full Text PDF

It has been suggested that cholesterol may modulate amyloid-beta (Abeta) formation, a causative factor of Alzheimer's disease (AD), by regulating distribution of the three key proteins in the pathogenesis of AD (beta-amyloid precursor protein (APP), beta-secretase (BACE1) and/or presenilin 1 (PS1)) within lipid rafts. In this work we tested whether cholesterol accumulation upon NPC1 dysfunction, which causes Niemann Pick type C disease (NPC), causes increased partitioning of APP into lipid rafts leading to increased CTF/Abeta formation in these cholesterol-rich membrane microdomains. To test this we used CHO NPC1(-/-) cells (NPC cells) and parental CHOwt cells.

View Article and Find Full Text PDF