Mutations within the LRRK2 gene have been identified in Parkinson's disease (PD) patients and have been implicated in the dysfunction of several cellular pathways. Here, we explore how pathogenic mutations and the inhibition of LRRK2 kinase activity affect cytoskeleton dynamics in mouse and human cell systems. We generated and characterized a novel transgenic mouse model expressing physiological levels of human wild type and G2019S-mutant LRRK2.
View Article and Find Full Text PDFOxygen tension is critical for proliferation of human and murine midbrain-derived neural precursor cells (mNPCs). Lack of hypoxia-inducible factor-1α (HIF1α) impairs midbrain dopaminergic neurogenesis which could be rescued by vascular endothelial growth factor (VEGF) via VEGFR-2 signaling. Here, we conditionally inactivated the VEGFR-2, encoded by the fetal liver kinase 1 (Flk1) gene, in murine NPCs to determine its role in proliferation and survival in vitro as well as survival of dopaminergic neurons in vivo.
View Article and Find Full Text PDFThe LRRK2 mutation G2019S is the most common genetic cause of Parkinson's disease (PD). To better understand the link between mutant LRRK2 and PD pathology, we derived induced pluripotent stem cells from PD patients harboring LRRK2 G2019S and then specifically corrected the mutant LRRK2 allele. We demonstrate that gene correction resulted in phenotypic rescue in differentiated neurons and uncovered expression changes associated with LRRK2 G2019S.
View Article and Find Full Text PDFTissue-specific stem cells, such as bone-marrow-derived human mesenchymal stem cells (hMSCs), are thought to be lineage restricted and therefore, could only be differentiated into cell types of the tissue of origin. Several recent studies however have suggested that these types of stem cells might be able to break barriers of germ layer commitment and differentiate in vitro into cells with neuroectodermal properties. We reported earlier about efficient conversion of adult hMSCs into a neural stem cell (NSC)-like population (hmNSCs, for human marrow-derived NSC-like cells) with all major properties of NSCs including functional neuronal differentiation capacity.
View Article and Find Full Text PDFParkinson's disease (PD) is a progressive neurodegenerative movement disorder and is characterized by a continuous and selective loss of dopaminergic neurons in the midbrain with a subsequent reduction of the neurotransmitter dopamine in the striatum. Strategies to overcome limitations of conventional symptomatic treatment have employed cell-based strategies including transplantation of developing neural tissue or neural stem cells (NSCs) into the degenerated host brain. Still there is a tug of war for determining the ideal cell source for transplantation strategies.
View Article and Find Full Text PDFMutations in the parkin gene are the most common cause of recessive familial Parkinson disease (PD). Parkin has been initially characterized as an ubiquitin E3 ligase, but the pathological relevance of this activity remains uncertain. Recently, an impressive amount of evidence has accumulated that parkin is involved in the maintenance of mitochondrial function and biogenesis.
View Article and Find Full Text PDFInterleukin-1 (IL-1) plays a pivotal role in terminal dopaminergic differentiation of midbrain-derived neural precursor cells already committed to the mesencephalic dopaminergic phenotype (named mdNPCs for mesencephalic dopaminergic neural precursor cells). Here we characterized the molecular events in long-term expanded rat nuclear receptor related-1(-) (Nurr1(-)) mdNPCs in response to IL-1beta during their terminal dopaminergic specification. We showed that IL-1beta induced a rapid induction of mRNA of dopaminergic key fate-determining transcription factors, such as Nurr1 and Pitx3, and a subsequent increase of tyrosine hydroxylase protein as an early marker for dopaminergic neurons in vitro.
View Article and Find Full Text PDFThe potential application of neural precursor cells (NPCs) in brain repair of neurodegenerative diseases has placed the factors capable of stimulating neurogenesis under increasing attention. Among these factors are dopamine (DA) D2/D3 receptor agonists, like 7-hydroxy-dipropylaminotetralin (7-OH-DPAT). The purpose of this investigation was to explore proliferating and neurostimulating effects of this drug in murine and human NPCs derived from the fetal midbrain.
View Article and Find Full Text PDFGlobal gene expression profiling was performed using RNA from adult human hippocampus-derived neuroprogenitor cells (NPCs) and multipotent frontal cortical fetal NPCs compared with adult human mesenchymal stem cells (hMSCs) as a multipotent adult stem cell control, and adult human hippocampal tissue, to define a gene expression pattern that is specific for human NPCs. The results were compared with data from various databases. Hierarchical cluster analysis of all neuroectodermal cell/tissue types revealed a strong relationship of adult hippocampal NPCs with various white matter tissues, whereas fetal NPCs strongly correlate with fetal brain tissue.
View Article and Find Full Text PDFOxygen tension is critical for proliferation of human and murine midbrain-derived neural precursor cells (mNPCs). Here, we conditionally inactivated the hypoxia-responsive transcription factor hypoxia-inducible factor-1alpha (HIF-1alpha) in murine NPCs to determine its role in proliferation, survival, and dopaminergic differentiation in vitro as well as survival of murine dopaminergic neurons in vivo. HIF-1alpha conditional knock-out (HIF-1alpha CKO) mNPCs showed midbrain-specific impairment of survival and proliferation.
View Article and Find Full Text PDFTissue-specific stem cells, such as bone marrow-derived mesodermal stromal cells (MSCs), are thought to be lineage restricted and, therefore, could only be differentiated into cell types of the tissue of origin. Several recent studies, however, suggest that these types of stem cells might be able to break barriers of germ layer commitment and differentiate in vitro and/or in vivo into cells of different tissues, such as neuroectodermal cell types. Recently, protocols for high-yield generation of undifferentiated neural stem cell (NSC)-like cells from MSCs of primate and human origin were reported.
View Article and Find Full Text PDFNeurogenesis in the adult human brain occurs within two principle neurogenic regions, the hippocampus and the subventricular zone (SVZ) of the lateral ventricles. Recent reports demonstrated the isolation of human neuroprogenitor cells (NPCs) from these regions, but due to limited tissue availability the knowledge of their phenotype and differentiation behavior is restricted. Here we characterize the phenotype and differentiation capacity of human adult hippocampal NPCs (hNPCs), derived from patients who underwent epilepsy surgery, on various feeder cells including fetal mixed cortical cultures, mouse embryonic fibroblasts (MEFs) and PA6 stromal cells.
View Article and Find Full Text PDFNeurogenesis in the adult brain occurs within the two principal neurogenic regions: the hippocampus and the subventricular zone of the lateral ventricles. The occurrence of adult neurogenesis in non-neurogenic regions, including the midbrain, remains controversial, but isolation of neural stem cells (NSCs) from several parts of the adult brain, including the substantia nigra, has been reported. Nevertheless, it is unclear whether adult NSCs do have the capacity to produce functional dopaminergic neurons, the cell type lost in Parkinson's disease.
View Article and Find Full Text PDFClonogenic neural stem cells (NSCs) are self-renewing cells that maintain the capacity to differentiate into brain-specific cell types, and may also replace or repair diseased brain tissue. NSCs can be directly isolated from fetal or adult nervous tissue, or derived from embryonic stem cells. Here, we describe the efficient conversion of human adult bone marrow stromal cells (hMSC) into a neural stem cell-like population (hmNSC, for human marrow-derived NSC-like cells).
View Article and Find Full Text PDF