Background: The widespread clinical application of genome-wide sequencing has resulted in many new diagnoses for rare genetic conditions, but testing regularly identifies variants of uncertain significance (VUS). The remarkable rise in the amount of genomic data has been paralleled by a rise in the number of protein structures that are now publicly available, which may have clinical utility for the interpretation of missense and in-frame insertions or deletions.
Methods: Within a UK National Health Service genomic medicine diagnostic laboratory, we investigated the number of VUS over a 5-year period that were evaluated using protein structural analysis and how often this analysis aided variant classification.
Rapid advances in sequencing technology have led to significant improvements in genomic analysis, resulting in increased understanding of the molecular basis of many endocrine conditions. Genomic testing for rare disease is being integrated into everyday clinical practice, as the importance of confirming a genetic diagnosis earlier in a patient's pathway helps direct their clinical care and specialized management. In England, the new nationally commissioned Genomic Medicine Service has started to deliver testing for rare and inherited disease and cancer somatic tissue via seven Genomic Laboratory Hubs.
View Article and Find Full Text PDFDespite the rapid expansion in recent years of databases reporting either benign or pathogenic genetic variations, the interpretation of novel missense variants remains challenging, particularly for clinical or genetic testing laboratories where functional analysis is often unfeasible. Previous studies have shown that thermodynamic analysis of protein structure can discriminate between groups of benign and pathogenic missense variants. However, although structures exist for many human diseaseāassociated proteins, such analysis remains largely unexploited in clinical laboratories.
View Article and Find Full Text PDFWe report 15 individuals with de novo pathogenic variants in WDR26. Eleven of the individuals carry loss-of-function mutations, and four harbor missense substitutions. These 15 individuals comprise ten females and five males, and all have intellectual disability with delayed speech, a history of febrile and/or non-febrile seizures, and a wide-based, spastic, and/or stiff-legged gait.
View Article and Find Full Text PDF