I-Motifs (iM) are non-canonical DNA structures potentially forming in the accessible, single-stranded, cytosine-rich genomic regions with regulatory roles. Chromatin, protein interactions, and intracellular properties seem to govern iM formation at sites with i-motif formation propensity (iMFPS) in human cells, yet their specific contributions remain unclear. Using in-cell NMR with oligonucleotide iMFPS models, we monitor iM-associated structural equilibria in asynchronous and cell cycle-synchronized HeLa cells at 37 °C.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
February 2024
DNA quadruplex structures provide an additional layer of regulatory control in genome maintenance and gene expression and are widely used in nanotechnology. We report the discovery of an unprecedented tetrastranded structure formed from a native G-rich DNA sequence originating from the telomeric region of Caenorhabditis elegans. The structure is defined by multiple properties that distinguish it from all other known DNA quadruplexes.
View Article and Find Full Text PDFMetal ions are essential components for the survival of living organisms. For most species, intracellular and extracellular ionic conditions differ significantly. As G-quadruplexes (G4s) are ion-dependent structures, changes in the [Na+]/[K+] ratio may affect the folding of genomic G4s.
View Article and Find Full Text PDFWe recently showed that Saccharomyces cerevisiae telomeric DNA can fold into an unprecedented pseudocircular G-hairpin (PGH) structure. However, the formation of PGHs in the context of extended sequences, which is a prerequisite for their function in vivo and their applications in biotechnology, has not been elucidated. Here, we show that despite its 'circular' nature, PGHs tolerate single-stranded (ss) protrusions.
View Article and Find Full Text PDFBone remodeling is a fine-tuned process principally regulated by a cascade triggered by interaction of receptor activator of NF-κB (RANK) and RANK ligand (RANKL). Excessive activity of the gene leads to increased bone resorption and can influence the incidence of osteoporosis. Although much has been learned about the intracellular signals activated by RANKL/RANK complex, significantly less is known about the molecular mechanisms of regulation of expression.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2018
A G-rich sequence found in the regulatory region of the RANKL gene, which is associated with homeostasis of bone metabolism, folds into a two-quartet basket-type G-quadruplex stabilized by A⋅G⋅A and G⋅G⋅G base-triads. Perusal of local structural features together with G/A-to-T modifications uncovered the critical role of A5 for the formation of a distinct antiparallel two-quartet topology and not the three-quartet topology that would be expected based on the sequence with four GGG-tracts alone. The structural changes induced by the A5-to-T5 modification include a switch in orientation and relative positions of G-strands that together with anti to syn reorientation of G12 provide insights into the complexity of the interactions that influence the folding of G-rich DNA.
View Article and Find Full Text PDFListeria monocytogenes is a mammalian pathogen that causes gastroenteritis, miscarriages and infections of the central nervous system in immunocompromised individuals. Its main virulence factor is listeriolysin O (LLO), a pore-forming cholesterol-dependent cytolysin (CDC), which enables bacterial escape from the phagolysosome and contributes to bacterial pathogenicity. Details of cholesterol (Chol) recognition and membrane binding mechanisms by LLO are still not known.
View Article and Find Full Text PDFIn this study, we report the first atomic resolution structure of a stable G-hairpin formed by a natively occurring DNA sequence. An 11-nt long G-rich DNA oligonucleotide, 5'-d(GTGTGGGTGTG)-3', corresponding to the most abundant sequence motif in irregular telomeric DNA from Saccharomyces cerevisiae (yeast), is demonstrated to adopt a novel type of mixed parallel/antiparallel fold-back DNA structure, which is stabilized by dynamic G:G base pairs that transit between N1-carbonyl symmetric and N1-carbonyl, N7-amino base-pairing arrangements. Although the studied sequence first appears to possess a low capacity for base pairing, it forms a thermodynamically stable structure with a rather complex topology that includes a chain reversal arrangement of the backbone in the center of the continuous G-tract and 3'-to-5' stacking of the terminal residues.
View Article and Find Full Text PDFStudy of interaction of mannose-based ligands with receptor DC-SIGN using high resolution NMR in combination with molecular modelling showed that four α-d-mannoside ligands interact with the binding site predominantly through the mannose moiety. The other two aromatic groups that are bound to α-d-mannose through a glycerol linker demonstrate interaction that can be related to their substitution pattern. Ligand with naphthyl and meta-substituted phenyl ring exhibited the most favourable binding characteristics.
View Article and Find Full Text PDFPurification of suitable quantity of homogenous protein is very often the bottleneck in protein structural studies. Overexpression of a desired gene and attachment of enzymatically cleavable affinity tags to the protein of interest made a breakthrough in this field. Here we describe the structure of Galleria mellonella silk proteinase inhibitor 2 (GmSPI-2) determined both by X-ray diffraction and NMR spectroscopy methods.
View Article and Find Full Text PDFBackground: S100A1 protein is a proposed target of molecule-guided therapy for heart failure.
Results: S-Nitrosylation of S100A1 is present in cells, increases Ca(2+) binding, and tunes the overall protein conformation.
Conclusion: Thiol-aromatic molecular switch is responsible for NO-related modification of S100A1 properties.