Publications by authors named "Martina Kleinova"

Three samples of albumin derived from human plasma (pharmaceutical grade, HSA) obtained from different commercial sources were investigated for their micro-heterogeneities by means of electrospray ionization (ESI) ion trap mass spectrometry (ITMS). The study covered MS analyses of the intact proteins as well as on the tryptic peptide level. The intact protein samples were analyzed without any separation step except for simple desalting.

View Article and Find Full Text PDF

Human plasma-derived antithrombin was characterized in both the native and de-N-glycosylated forms (without separation of isoforms) by means of electrospray ionization ion trap mass spectrometry (ESI-ITMS). In order to determine the limits of the instrument set-up, the molecular mass precision and accuracy of the ESI-ITMS analysis was evaluated with the standard protein enolase and some instrumental data acquisition parameters were optimized. Mass precision was determined as a function of the number of averaged mass spectra (= scans) and data acquisition time.

View Article and Find Full Text PDF

A group of five heifers were fed for 84 days with 2 kg of zearalenone-contaminated oats (1370 microg/kg) resulting in an average daily intake of 2740 microg of zearalenone per animal. In a parallel experiment five heifers were implanted with two 25 mg zeranol pellets, one at the beginning of the study and one after 42 days, and fed with 2 kg of "blank" control oats (79 microg/kg, daily intake = 158 microg). A third group of five animals were also fed with 2 kg of "blank" oats and served as control.

View Article and Find Full Text PDF

The content of zearalenone and its metabolites in urine and tissue samples from pigs fed zearalenone-contaminated oats was established by analytical methods combining solid-phase extraction cleanup of the samples with highly selective liquid chromatography-mass spectrometry (LC-MS)/MS detection. Investigation of the urine samples revealed that approximately 60% of zearalenone was transformed in vivo to alpha-zearalenol and its epimer beta-zearalenol in a mean ratio of 3:1. Zeranol and taleranol as further metabolites could only be detected in trace amounts.

View Article and Find Full Text PDF