Publications by authors named "Martina Kirstein"

Understanding the intricate pathogenic mechanisms behind Parkinson's disease (PD) and its multifactorial nature presents a significant challenge in disease modeling. To address this, we explore genetic models that better capture the disease's complexity. Given that aging is the primary risk factor for PD, this study investigates the impact of aging in conjunction with overexpression of wild-type human α-synuclein (α-Syn) in the dopaminergic system.

View Article and Find Full Text PDF

Adult neurogenesis is supported by multipotent neural stem cells (NSCs) with unique properties and growth requirements. Adult NSCs constitute a reversibly quiescent cell population that can be activated by extracellular signals from the microenvironment in which they reside in vivo. Although genomic imprinting plays a role in adult neurogenesis through dose regulation of some relevant signals, the roles of many imprinted genes in the process remain elusive.

View Article and Find Full Text PDF

Cell differentiation involves profound changes in global gene expression that often has to occur in coordination with cell cycle exit. Because cyclin-dependent kinase inhibitor p27 reportedly regulates proliferation of neural progenitor cells in the subependymal neurogenic niche of the adult mouse brain, but can also have effects on gene expression, we decided to molecularly analyze its role in adult neurogenesis and oligodendrogenesis. At the cell level, we show that p27 restricts residual cyclin-dependent kinase activity after mitogen withdrawal to antagonize cycling, but it is not essential for cell cycle exit.

View Article and Find Full Text PDF

Down syndrome (DS) induces a variable phenotype including intellectual disabilities and early development of Alzheimer's disease (AD). Moreover, individuals with DS display accelerated aging that affects diverse organs, among them the brain. The Ts65Dn mouse is the most widely used model to study DS.

View Article and Find Full Text PDF

In human glioblastoma (GBM), the presence of a small population of cells with stem cell characteristics, the glioma stem cells (GSCs), has been described. These cells have GBM potential and are responsible for the origin of the tumors. However, whether GSCs originate from normal neural stem cells (NSCs) as a consequence of genetic and epigenetic changes and/or dedifferentiation from somatic cells remains to be investigated.

View Article and Find Full Text PDF

Chemokines are small, secreted molecules that mediate inflammatory reactions. Neurons and astrocytes constitutively express chemokines implicated in the process of neuroinflammation associated with neurodegenerative diseases. The monocyte chemoattractant protein-1 (MCP-1) has been widely related to this process.

View Article and Find Full Text PDF

Insulin is one of the standard components used to culture primary neurospheres. Although it stimulates growth of different types of cells, the effects of insulin on adult neural stem cells (NSCs) have not been well characterized. Here, we reveal that insulin stimulates proliferation, but not survival or self-renewal, of adult NSCs.

View Article and Find Full Text PDF

The identification of mechanisms that maintain stem cell niche architecture and homeostasis is fundamental to our understanding of tissue renewal and repair. Cell adhesion is a well-characterized mechanism for developmental morphogenetic processes, but its contribution to the dynamic regulation of adult mammalian stem cell niches is still poorly defined. We show that N-cadherin-mediated anchorage of neural stem cells (NSCs) to ependymocytes in the adult murine subependymal zone modulates their quiescence.

View Article and Find Full Text PDF

Insulin and insulin-like growth factor-I play important roles in the development and maintenance of neurons and glial cells of the nervous system. Both factors activate tyrosine kinase receptors, which signal through adapter proteins of the insulin receptor substrate (IRS) family. Although insulin and insulin-like growth factor-I receptors are expressed in dorsal root ganglia (DRG), the function of IRS-mediated signalling in these structures has not been studied.

View Article and Find Full Text PDF

Parkinson's disease and other neurodegenerative disorders associated to changes in alpha-synuclein often result in autonomic dysfunction, most of the time accompanied by abundant expression of this synaptic protein in peripheral autonomic neurons. Given that expression of alpha-synuclein in vascular elements has been previously reported, the present study was undertaken to determine whether alpha-synuclein directly participates in the regulation of vascular responsiveness. We detected by immunohistochemistry perivascular nerve fibers containing alpha-synuclein in the aorta of mice while aortic endothelial cells and muscular fibers themselves did not exhibit detectable levels of this protein.

View Article and Find Full Text PDF

Neurotrophins promote the survival of specific types of neurons during development and ensure proper maintenance and function of mature responsive neurons. Significant effects of BDNF (Brain-Derived Neurotrophic Factor) on pain physiology have been reported but the contribution of this neurotrophin to the development of nociceptors has not been investigated. We present evidence that BDNF is required for the survival of a significant fraction of peptidergic and non-peptidergic nociceptors in dorsal root ganglia (DRG) postnatally.

View Article and Find Full Text PDF

Peripheral interactions between nociceptive fibers and mast cells contribute to inflammatory pain, but little is known about mechanisms mediating neuro-immune communication. Here we show that metalloproteinase MT5-MMP (MMP-24) is an essential mediator of peripheral thermal nociception and inflammatory hyperalgesia. We report that MT5-MMP is expressed by CGRP-containing peptidergic nociceptors in dorsal root ganglia and that Mmp24-deficient mice display enhanced sensitivity to noxious thermal stimuli under basal conditions.

View Article and Find Full Text PDF