Publications by authors named "Martina Kieninger"

Context: Carbonyl compounds, especially aldehydes, emitted to the atmosphere, may suffer hydration in aerosols or water droplets in clouds. At the same time, they can react with hydroxyl radicals which may add or abstract hydrogen atoms from these species. The interplay between hydration and hydrogen abstraction is studied using density functional and quantum composite theoretical methods, both in the gas phase and in simulated bulk water.

View Article and Find Full Text PDF

Sulfenic acids are important intermediates in the oxidation of cysteine thiol groups in proteins by reactive oxygen species. The mechanism is influenced heavily by the presence of polar groups, other thiol groups, and solvent, all of which determines the need to compute precisely the energies involved in the process. Surprisingly, very scarce experimental information exists about a very basic property of sulfenic acids, the enthalpies of formation.

View Article and Find Full Text PDF

The gas-phase reaction products of 2-fluoropropene (2FP) with Cl atoms have been determined for the first time at 298 K and atmospheric pressure using a 1080 L quartz-glass photoreactor coupled with FTIR spectroscopy to monitor reactants and products. Acetyl fluoride and formyl chloride were observed as the main products with yields of (106 ± 10)% and (100 ± 11)%, respectively. Electronic structure calculations of reactants, intermediates, products and transition states on a detailed mechanism of the reaction were performed by DFT procedures (BMK, M06, M062X/D3), as well as accurate composite methods on both the addition and abstraction reaction channels.

View Article and Find Full Text PDF

In a previous work, we have investigated the initial steps of the reaction of toluene with the hydroxyl radical using several quantum chemical approaches including density functional and composite post-Hartree-Fock models. Comparison of H-abstraction from the methyl group and additions at different positions of the phenyl ring showed that the former reaction channel is favored at room temperature. This conclusion appears at first sight incompatible with the experimental observation of a lower abundance of the product obtained from abstraction (benzaldehyde) with respect to those originating from addition (cresols).

View Article and Find Full Text PDF

Flavin cofactors, like flavin adenine dinucleotide (FAD), are important electron shuttles in living systems. They catalyze a wide range of one- or two-electron redox reactions. Experimental investigations include UV-vis as well as infrared spectroscopy.

View Article and Find Full Text PDF

The formation of selenium species in some biological processes involves the generation of ionic and radical intermediates such as RSe, RSe, RSeO, and RSeO, among others. We performed a theoretical study of the possible mechanisms for the reaction of the two simplest Se radicals-the hydroselenyl (HSe) and selenenic (HSeO) radicals, in which the possible products, intermediates, and transition-state structures were investigated. Density functional theory (DFT) was applied at the B3LYP/6-311++G(3df,3pd) level and the Ahlrichs Coulomb fitting basis sets were employed with an effective core potential (ECP) for both Se atoms.

View Article and Find Full Text PDF

Several 1:1, 1:2, and 2:2 complexes between BF3 and CH3OH (Met), CH3COOH (AcA), (CH3)2O (DME), (CH3CH2)2O (DEE), and (CH2)2O (EOX) have been studied using ab initio (MP2) and density functional theory (DFT) (PBE, B3LYP) methods and the 6-311++G(3df,2pd) basis set. Geometrical structures and vibrational frequencies are reported, in most cases, for the first time. A detailed comparison of the vibrational frequencies for the O.

View Article and Find Full Text PDF

The geometric structure of 2,3,5,6-tetrafluoroanisole and the potential function for internal rotation around the C(sp2)-O bond were determined by gas electron diffraction (GED) and quantum chemical calculations. Analysis of the GED intensities with a static model resulted in near-perpendicular orientation of the O-CH3 bond relative to the benzene plane with a torsional angle around the C(sp2)-O bond of tau(C-O) = 67(15) degrees. With a dynamic model, a wide single-minimum potential for internal rotation around the C(sp2)-O bond with perpendicular orientation of the methoxy group [tau(C-O) = 90 degrees] and a barrier of 2.

View Article and Find Full Text PDF