A comprehensive analysis of the molecular network of cellular factors establishing and maintaining pluripotency as well as self renewal of pluripotent stem cells is key for further progress in understanding basic stem cell biology. Nanog is necessary for the natural induction of pluripotency in early mammalian development but dispensable for both its maintenance and its artificial induction. To gain further insight into the molecular activity of Nanog, we analyzed the outcomes of Nanog gain-of-function in various cell models employing a recently developed biologically active recombinant cell-permeant protein, Nanog-TAT.
View Article and Find Full Text PDFA comprehensive understanding of the functional network of transcription factors establishing and maintaining pluripotency is key for the development of biomedical applications of stem cells. Nanog plays an important role in early development and is essential to induce natural pluripotency in embryonic stem cells (ESCs). Inducible gain-of-function systems allowing a precise control over time and dosage of Nanog activity would be highly desirable to study its vital role in the establishment and maintenance of pluripotency at molecular level.
View Article and Find Full Text PDFCultures of human embryonic stem cell typically rely on protein matrices or feeder cells to support attachment and growth, while mechanical, enzymatic or chemical cell dissociation methods are used for cellular passaging. However, these methods are ill defined, thus introducing variability into the system, and may damage cells. They also exert selective pressures favouring cell aneuploidy and loss of differentiation potential.
View Article and Find Full Text PDF