Polycythemia vera (PV) and essential thrombocythemia (ET) are chronic myeloproliferative disorders characterized by an increased incidence of thrombo-hemorrhagic complications. The acquired somatic Janus kinase 2 (JAK2) V617F mutation is present in the majority of PV and ET patients. Because aberrant protein Tyr-phosphorylation has been associated with hematopoietic malignancies, the activity of the tyrosine kinases Src and JAK2 was analyzed in resting and thrombin-stimulated platelets from 13 PV and 42 ET patients.
View Article and Find Full Text PDFThe endoplasmic-reticulum chaperone Grp94 is required for the cell surface export of molecules involved in the native immune response, in mesoderm induction and muscle development, but the signals responsible for Grp94 recruitment are still obscure. Here we show for the first time that Grp94 undergoes Tyr-phosphorylation in differentiating myogenic C2C12 cells. By means of phospho-proteomic and immunoprecipitation analyses, and the use of Src-specific inhibitors we demonstrate that the Src-tyrosine-kinase Fyn becomes active early after induction of C2C12 cell differentiation, in parallel with the recruitment and the Tyr-phosphorylation of Grp94, which peaks at 6-hour differentiation.
View Article and Find Full Text PDFLyn, a tyrosine kinase belonging to the Src family, plays a key role as a switch molecule that couples the B-cell receptor to downstream signaling. In B-CLL cells, Lyn is overexpressed, anomalously present in the cytosol, and displays a high constitutive activity, compared with normal B lymphocytes. The aim of this work was to gain insights into the molecular mechanisms underlying these aberrant properties of Lyn, which have already been demonstrated to be related to defective apoptosis in B-cell chronic lymphocytic leukemia (B-CLL) cells.
View Article and Find Full Text PDFTo explore the molecular mechanisms by which complexes of Grp94 with IgG, purified from the plasma of diabetic subjects, could drive an inflammatory risk in vascular cells, native Grp94 was co-incubated with human, non-immune IgG to obtain the formation of complexes that were then tested on human umbilical vein endothelial cells (HUVECs). Co-incubation of Grp94 with IgG led to the formation of stable, SDS-resistant complexes that displayed effects partly similar and partly significantly different from those of Grp94 alone. Both Grp94 alone and with IgG stimulated the cell growth and promoted angiogenesis by a mechanism of autocrine/paracrine activation of the expression of heat shock protein (HSP)90 and HSP70.
View Article and Find Full Text PDFWe previously demonstrated that plasma of type 1 diabetic patients contains antibodies complexed irreversibly with Grp94 that also display proteolytic activity. In this work, we wanted to test whether antibodies obtained from diabetic plasma may convey an inflammatory risk on vascular cells. To this aim, IgG were purified on the Protein-G column from individual plasma of eight type 1 diabetic patients, and then tested on HUVECs to measure effects on cell growth and morphologic changes at different incubation times.
View Article and Find Full Text PDFVascular endothelial growth factor (VEGF) is one of the key regulators of tumor neoangiogenesis. It acts through two types of high-affinity tyrosine kinase receptors (VEGF receptor-1 [VEGFR-1]/fms-related tyrosine kinase 1 [Flt-1] and VEGFR-2/kinase domain receptor [KDR]) expressed on endothelial cells. VEGFRs have also been detected on cancer cells, suggesting a possible autocrine effect of VEGF on their growth.
View Article and Find Full Text PDFAn increase in proteolytic activity is an early common feature of diabetes, and is associated with the development of vascular complications. We performed an extensive proteomic investigation on plasma of type 1 diabetic subjects to discover why some of them apparently lacked any measurable proteolytic activity. Activity was found enclosed in immune complexes in which Fab/(Fab)(2) displayed a serine-like catalytic activity.
View Article and Find Full Text PDF