Publications by authors named "Martina Fenske"

Bisphenol A alternatives are manufactured as potentially less harmful substitutes of bisphenol A (BPA) that offer similar functionality. These alternatives are already in the market, entering the environment and thus raising ecological concerns. However, it can be expected that levels of BPA alternatives will dominate in the future, they are limited information on their environmental safety.

View Article and Find Full Text PDF

A wide variety of active pharmaceutical ingredients are released into the environment and pose a threat to aquatic organisms. Drug products using micro- and nanoparticle technology can lower these emissions into the environment by their increased bioavailability to the human patients. However, due to this enhanced efficacy, micro- and nanoscale drug delivery systems can potentially display an even higher toxicity, and thus also pose a risk to non-target organisms.

View Article and Find Full Text PDF

Nanomaterials have gained huge importance in various fields including nanomedicine. Nanoformulations of drugs and nanocarriers are used to increase pharmaceutical potency. However, it was seen that polymeric nanomaterials can cause negative effects.

View Article and Find Full Text PDF

According to the World Health Organization, more than 1 billion people are at risk of or are affected by neglected tropical diseases. Examples of such diseases include trypanosomiasis, which causes sleeping sickness; leishmaniasis; and Chagas disease, all of which are prevalent in Africa, South America, and India. Our aim within the New Medicines for Trypanosomatidic Infections project was to use (1) synthetic and natural product libraries, (2) screening, and (3) a preclinical absorption, distribution, metabolism, and excretion-toxicity (ADME-Tox) profiling platform to identify compounds that can enter the trypanosomatidic drug discovery value chain.

View Article and Find Full Text PDF

Metal toxicity is a global environmental challenge. Fish are particularly prone to metal exposure, which can be lethal or cause sublethal physiological impairments. The objective of this study was to investigate how adverse effects of chronic exposure to non-toxic levels of essential and non-essential metals in early life stage zebrafish may be explained by changes in the transcriptome.

View Article and Find Full Text PDF

Environmental metals are known to cause harmful effects to fish of which many molecular mechanisms still require elucidation. Particularly concentration dependence of gene expression effects is unclear. Focusing on this matter, zebrafish embryo toxicity tests were used in combination with transcriptomics.

View Article and Find Full Text PDF

In ecotoxicology, transcriptomics is an effective way to detect gene expression changes in response to environmental pollutants. Such changes can be used to identify contaminants or contaminant classes and can be applied as early warning signals for pollution. To do so, it is important to distinguish contaminant-specific transcriptomic changes from genetic alterations due to general stress.

View Article and Find Full Text PDF

Dendrimers are an emerging class of polymeric nanoparticles with beneficial biomedical applications like early diagnostics, in vitro gene transfection or controlled drug delivery. However, the potential toxic impact of exposure on human health or the environment is often inadequately defined. Thus, polyamidoamine (PAMAM) dendrimers of generations G3.

View Article and Find Full Text PDF

The Fish Sexual Development Test (FSDT) is a non-reproductive test to assess adverse effects of endocrine disrupting chemicals. With the present study it was intended to evaluate whether gene expression endpoints would serve as predictive markers of endocrine disruption in a FSDT. For proof-of-concept, a FSDT according to the OECD TG 234 was conducted with the non-steroidal aromatase inhibitor fadrozole (test concentrations: 10μg/L, 32μg/L, 100μg/L) using zebrafish (Danio rerio).

View Article and Find Full Text PDF

Low level metal contaminations are a prevalent issue with often unknown consequences for health and the environment. Effect-based, multifactorial test systems with zebrafish embryos to assess in particular developmental toxicity are beneficial but rarely used in this context. We therefore exposed wild-type embryos to the metals copper (CuSO4), cadmium (CdCl2) and cobalt (CoSO4) for 72 h to determine lethal as well as sublethal morphological effects.

View Article and Find Full Text PDF

The aim of the present study was to investigate the effects of the androgenic endocrine disruptor 17β-trenbolone on the sexual development of zebrafish (Danio rerio) with special emphasis on the question of whether adverse outcomes of developmental exposure are reversible or persistent. An exposure scenario including a recovery phase was chosen to assess the potential reversibility of androgenic effects. Zebrafish were exposed to environmentally relevant concentrations of 17β-trenbolone (1 ng/L-30 ng/L) from fertilization until completion of gonad sexual differentiation (60 d posthatch).

View Article and Find Full Text PDF

A number of regulations have been implemented that aim to control the release of potentially adverse endocrine disrupters into the aquatic environment based on evidence from laboratory studies. Currently, such studies rely on testing approaches with adult fish because reliable alternatives have not been validated so far. Fish embryo tests have been proposed as such an alternative, and here we compared two species (medaka and zebrafish) to determine their suitability for the assessment of substances with estrogenic and anti-androgenic activity.

View Article and Find Full Text PDF

The aim of the present study was to investigate the persistence of the feminizing effects of discontinued 17α-ethinylestradiol (EE2) exposure on zebrafish (Danio rerio). An exposure scenario covering the sensitive phase of sexual differentiation, as well as final gonad maturation was chosen to examine the estrogenic effects on sexual development of zebrafish. Two exposure scenarios were compared: continuous exposure to environmentally relevant concentrations (0.

View Article and Find Full Text PDF

The fish embryo toxicity test (FET) is currently one of the most advocated animal alternative tests in ecotoxicology. To date, the application of the FET with zebrafish (zFET) has focused on acute toxicity assessment, where only lethal morphological effects are accounted for. An application of the zFET beyond acute toxicity, however, necessitates the establishment of more refined and quantifiable toxicological endpoints.

View Article and Find Full Text PDF

Exposure to environmental chemicals known as endocrine disruptors (EDs) is in many cases associated with an unpredictable hazard for wildlife and human health. The identification of endocrine disruptive properties of chemicals certain to enter the aquatic environment relies on toxicity tests with fish, assessing adverse effects on reproduction and sexual development. The demand for quick, reliable ED assays favored the use of fish embryos as alternative test organisms.

View Article and Find Full Text PDF

Silver nanoparticles (AgNPs) are widely believed to be retained in the sewage sludge during sewage treatment. The AgNPs and their derivatives, however, re-enter the environment with the sludge and via the effluent. AgNP were shown to occur in surface water, while evidence of a potential toxicity of AgNPs in aquatic organisms is growing.

View Article and Find Full Text PDF

Assessment of endocrine disruption currently relies on testing strategies involving adult vertebrates. In order to minimize the use of animal tests according to the 3Rs principle of replacement, reduction and refinement, we propose a transcriptomics and fish embryo based approach as an alternative to identify and analyze an estrogenic activity of environmental chemicals. For this purpose, the suitability of 48 h and 7 days post-fertilization zebrafish and medaka embryos to test for estrogenic disruption was evaluated.

View Article and Find Full Text PDF

Rodents are widely used to test the developmental neurotoxicity potential of chemical substances. The regulatory test procedures are elaborate and the requirement of numerous animals is ethically disputable. Therefore, non-animal alternatives are highly desirable, but appropriate test systems that meet regulatory demands are not yet available.

View Article and Find Full Text PDF

Current aquatic chemical testing guidelines recognize that solvents can potentially interfere with the organism or environmental conditions of aquatic ecotoxicity tests and therefore recommend concentration limits for their use. These recommendations are based on evidence of adverse solvent effects in apical level tests. The growing importance of subapical and chronic endpoints in future test strategies, however, suggests that the limits may need reassessment.

View Article and Find Full Text PDF

The use of fish embryos is gaining popularity for research in the area of toxicology and teratology. Particularly embryos of the zebrafish offer an array of different applications ranging from regulatory testing to mechanistic research. For this reason a consortium of two research centres and a company with the support of the COST Action EuFishBiomed has organised the Workshop “The zebrafish embryo model in toxicology and teratology”, in Karlsruhe, Germany, 2nd–3rd September 2010.

View Article and Find Full Text PDF

Dmrt1 and amh are genes involved in vertebrate sex differentiation. In this study, we cloned dmrt1 and amh cDNAs in zebrafish (Danio rerio) and investigated the effects of exposure to 17a-ethinylestradiol (EE2), during early life on their patterns of expression and impact on the subsequent gonadal phenotype. Expression of both amh and dmrt1 in embryos was detected as early as at 1 day post fertilization (dpf) and enhanced expression of amh from 25 dpf was associated with the period of early gonadal differentiation.

View Article and Find Full Text PDF

Mysid crustaceans have been put forward by several regulatory bodies as suitable test organisms to screen and test the potential effects of environmental endocrine disruptors. Despite the well-established use of mysid reproductive endpoints such as fecundity, egg development time, and time to first brood release in standard toxicity testing, little information exists on the hormonal regulation of these processes. Control of vitellogenesis is being studied intensively because yolk is an excellent model for studying mechanisms of hormonal control, and vitellogenesis can be chemically disrupted.

View Article and Find Full Text PDF

The aim of the present study was to elucidate how full life-cycle exposure to estrogens impacts zebrafish development and reproduction, compared to partial life-cycle exposure only, and whether the estrogen-induced effects in zebrafish are reversible or irreversible. Zebrafish were exposed in a flow-through system to an environmentally relevant concentration (3 ng/L) of the synthetic estrogen 17alpha-ethinylestradiol (EE2) either from fertilization until the all-ovary stage of gonad development (i.e.

View Article and Find Full Text PDF

This study investigated whether gonadal sex differentiation of zebrafish (Danio rerio) is susceptible to compounds that interfere with cytochrome P450 aromatase (P450arom). Treatment of zebrafish during the period of gonadal differentiation with either the non-steroidal aromatase inhibitor fadrozole or 17alpha-methyltestosterone (MT) changed gonad morphological differentiation and altered the pattern of P450arom gene (CYP19) expression. Application of fadrozole (500 microg/g of food) between days 35 and 71 post-fertilisation (pf) resulted in 100% masculinisation, i.

View Article and Find Full Text PDF