Publications by authors named "Martina Felix"

Asymmetry in the migrating group of cells is critical for efficient directed movement observed in normal development and in pathological conditions like tumor cell metastasis. This is conspicuously detected at the level of polarized protrusions and differential localization of various polarity proteins in collectively moving clusters. Over the years, border cell migration in Drosophila oogenesis has emerged as an excellent model system for studying polarity in the migrating group of cells.

View Article and Find Full Text PDF

As collective cell migration is intimately involved in different aspects of metazoan development, molecular mechanisms underlying this process are being explored in a variety of developmental contexts. Border cell (BC) migration during oogenesis has emerged as an excellent genetic model for studying collective cell migration. BCs are of epithelial origin but acquire partial mesenchymal characteristics before migrating as a group towards the oocyte.

View Article and Find Full Text PDF

Group cell migration is a highly coordinated process that is involved in a number of physiological events such as morphogenesis, wound healing and tumor metastasis. Unlike single cells, collectively moving cells are physically attached to each other and retain some degree of apical-basal polarity during the migratory phase. Although much is known about direction sensing, how polarity is regulated in multicellular movement remains unclear.

View Article and Find Full Text PDF