Female house mice produce pheromone-carrying major urinary proteins (MUPs) in a cycling manner, thus reaching the maximum urinary production just before ovulation. This is thought to occur to advertise the time of ovulation via deposited urine marks. This study aimed to characterize the protein content from the house mouse vaginal flushes to detect putative vaginal-advertising molecules for a direct identification of reproductive states.
View Article and Find Full Text PDFChemical communication is mediated by sex-biased signals abundantly present in the urine, saliva and tears. Because most studies concentrated on the urinary signals, we aimed to determine the saliva proteome in wild Mus musculus musculus, to extend the knowledge on potential roles of saliva in chemical communication. We performed the gel-free quantitative LC-MS/MS analyses of saliva and identified 633 proteins with 134 (21%) of them being sexually dimorphic.
View Article and Find Full Text PDFEstrogens play a crucial role in spermatogenesis and estrogen receptor α knock-out male mice are infertile. It has been demonstrated that estrogens significantly increase the speed of capacitation in vitro; however this may lead to the reduction of reproductive potential due to the decreased ability of these sperm to undergo the acrosome reaction. To date the in vivo effect of estrogens on the ability of sperm to capacitate has not been investigated.
View Article and Find Full Text PDFSperm chromatin reveals two characteristic features in that protamines are the predominant nuclear proteins and remaining histones are highly acetylated. Histone H4 acetylated at lysine 12 (H4K12ac) is localized in the post-acrosomal region, while protamine-1 is present within the whole nucleus. Chromatin immunoprecipitation in combination with promoter array analysis allowed genome-wide identification of H4K12ac binding sites.
View Article and Find Full Text PDFIn order for mammalian sperm to obtain a fertilizing ability, they must undergo a complex of molecular changes, called capacitation. During capacitation, steroidal compounds can exert a fast nongenomic response in sperm through their interaction with plasma membrane receptors, and activate crucial signaling pathways leading to time-dependent protein tyrosine phosphorylation (TyrP). Estrogen receptor beta was detected in epididymal mouse sperm; therefore, the effect of 17B-estradiol, estrone, estriol, and 17A-ethynylestradiol on mouse sperm capacitation in vitro was investigated.
View Article and Find Full Text PDF