Conventional structural Magnetic Resonance (MR) techniques can accurately identify brain tumors but do not provide exhaustive information about the integrity of the surrounding/embedded white matter (WM). In this study, we used Diffusion-Weighted (DW) MRI tractography to explore tumor-induced alterations of WM architecture without any a priori knowledge about the fiber paths under consideration. We used deterministic multi-fiber tractography to analyze 16 cases of histologically classified brain tumors (meningioma, low-grade glioma, high-grade glioma) to evaluate the integrity of WM bundles in the tumoral region, in relation to the contralateral unaffected hemisphere.
View Article and Find Full Text PDFLimb immobilization and nonuse are well-known causes of corticomotor depression. While physical training can drive the recovery from nonuse-dependent corticomotor effects, it remains unclear if it is possible to gain access to motor cortex in alternative ways, such as through motor imagery (MI) or action observation (AO). Transcranial magnetic stimulation was used to study the excitability of the hand left motor cortex in normal subjects immediately before and after 10 h of right arm immobilization.
View Article and Find Full Text PDFThe study of anatomical connectivity is essential for interpreting functional MRI data and for establishing how brain areas are linked together into networks to support higher-order functions. Diffusion-weighted MR images (DWI) and tractography provide a unique noninvasive tool to explore the connectional architecture of the brain. The identification of anatomical circuits associated with a specific function can be better accomplished by the joint application of diffusion and functional MRI.
View Article and Find Full Text PDFRecent data show a broad correspondence between human resting-state and task-related brain networks. We performed a functional magnetic resonance imaging (fMRI) study to compare, in the same subjects, the spatial independent component analysis (ICA) maps obtained at rest and during the observation of either reaching/grasping hand actions or matching static pictures. Two parietofrontal networks were identified by ICA from action observation task data.
View Article and Find Full Text PDF